\(y=-x^4+2\left(2+m\right)x^2-3-2m\left(1\right)\) với m là tham số. Tìm tất c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)

Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)

(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt

Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)

Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \)  là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :

\(x_2-x_1=x_3-x_2=x_4-x_3\)

\(\Leftrightarrow t_2=9t_1\left(a\right)\)

Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)

Từ (a) và (b) ta có : \(9m^2-14m-39=0\)

Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)

21 tháng 4 2016

Phương trình hoành độ giao điểm của đồ thị với trục hoành là :

\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)

Biến đổi tương đương phương trình này :

\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)

      \(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)

Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :

\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)

Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)

\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)

 

21 tháng 4 2016

Phương trình hoành độ giao điểm của \(\left(C_m\right)\) và đường thẳng y = -1 là :

\(x^4-\left(3m+2\right)x^2+3m=-1\Leftrightarrow\left(x^2-1\right)\left(x^2-3m-1\right)=0\)

Đường thẳng y = -1 cắt  \(\left(C_m\right)\) tại 4 điểm phân biệt có hoành độ nhỏ hơn 2 khi và chỉ khi :

\(0 < 3m+1 < 4\) và \(3m+1\ne1\)

\(\Leftrightarrow\)\(-\frac{1}{3}< m\)< 1 và \(m\ne0\)

 
27 tháng 4 2016

Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d

\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)

Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của  \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)

Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của  \(\Delta\)

Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow m^2+20m+25=0\)

                         \(\Leftrightarrow m=-10\pm5\sqrt{3}\)

 
 
22 tháng 11 2017

25 tháng 12 2018

15 tháng 4 2017

Đồ thị (C)  cắt trục hoành tại điểm phân biệt tạo thành cấp số cộng khi và chỉ khi phương trình x3-3x2-1= m   có ba nghiệm phân biệt lập thành cấp cố cộng.

Suy ra đường thẳng y=m đi qua điểm uốn của đồ thị y=x3-3x2-1 (do đồ thị (C)  nhận điểm uốn làm tâm đối xứng).

Mà điểm uốn của y= x3-3x2-1 là I(1 ; -3) .

Suy ra m=-3.

Chọn C.

15 tháng 12 2017

+ Đồ thị C cắt trục hoành tại điểm phân biệt tạo thành cấp số cộng khi và chỉ khi phương trình  x3- 3x2- 1=m   có ba nghiệm phân biệt lập thành cấp cố cộng.

+ Suy ra đường thẳng y= m đi qua điểm uốn của đồ thị y= x3- 3x2- 1

(do đồ thị (C)  nhận điểm uốn làm tâm đối xứng).

+ Mà điểm uốn của đồ thị đã cho là I( 1 ; -3)

( hoành độ điểm uốn là nghiệm phương trình y’’= 0 hay y’’= 6x-6=0 do đó x= 1 ; y= -3)

Suy ra m=  -3.

Chọn C.

28 tháng 10 2019

Phương trình hoành độ giao điểm: x4-(3m+4) x2+ m= 0       ( 1)

Đặt t= x2, phương trình trở thành: t2-(3m+4)t+ m= 0       ( 2)

C cắt trục hoành tại bốn điểm phân biệt khi và chỉ khi ( 1) có bốn nghiệm phân biệt

Khi đó ( 2) có hai nghiệm dương phân biệt 

+ Khi đó phương trình *(2) có hai nghiệm 0<t1< y2. Suy ra phương trình (1)  có bốn nghiệm phân biệt là x 1 = - t 2 < x 2 = - t 1 < x 3 = t 1 < x 4 = - t 2  . Bốn nghiệm x1; x2; x3; x4 lập thành cấp số cộng

⇔ x 2 - x 1 = x 3 - x 2 = x 4 - x 3 ⇔ - t 1 + t 2 = 2 t 1 ⇔ t 2 = 3 t 1 ⇔ t 2 = 9 t 1                   ( 3 )

Theo định lý Viet ta có  t 1 + t 2 = 3 m + 4           ( 4 ) t 1 t 2 = m 2                               ( 5 )  

Từ (3) và (4) ta suy ra được  t 1 = 3 m + 4 10 t 2 = 9 ( 3 m + 4 ) 10   ( 6 ) .

Thay (6) vào  (5)  ta được 

 

Vậy giá trị m  cần tìm làm =12; m= -12/ 19

Chọn B.

11 tháng 5 2019

Phương trình hoành độ giao điểm: x4-(3m+4)x2+m2  =0 (1)

Đặt t = x≥ 0, phương trình (1) trở thành: t2-(3m+4)t+m2=0   (2)

(C) cắt trục hoành tại bốn điểm phân biệt khi (1) có bốn nghiệm phân biệt

Hay (2) có hai nghiệm dương phân biệt 

Khi đó phương trình (2) có hai nghiệm 0<t1<t2  Suy ra phương trình (1)  có bốn nghiệm phân biệt là cW4mmwmwO8sO.png

Bốn nghiệm x1; x2 ; x3; x4 lập thành cấp số cộng

Vậy giá trị m cần tìm là m=12; m=-12/19; có 1 giá trị nguyên của m thỏa mãn yêu cầu đề bài.

Chọn B.