Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của đồ thị với trục hoành là :
\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)
Biến đổi tương đương phương trình này :
\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)
Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :
\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)
Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)
\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)
Phương trình hoành độ giao điểm của \(\left(C_m\right)\) và đường thẳng y = -1 là :
\(x^4-\left(3m+2\right)x^2+3m=-1\Leftrightarrow\left(x^2-1\right)\left(x^2-3m-1\right)=0\)
Đường thẳng y = -1 cắt \(\left(C_m\right)\) tại 4 điểm phân biệt có hoành độ nhỏ hơn 2 khi và chỉ khi :
\(0 < 3m+1 < 4\) và \(3m+1\ne1\)
\(\Leftrightarrow\)\(-\frac{1}{3}< m\)< 1 và \(m\ne0\)
Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d
\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)
Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)
Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của \(\Delta\)
Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow m^2+20m+25=0\)
\(\Leftrightarrow m=-10\pm5\sqrt{3}\)
Đồ thị (C) cắt trục hoành tại điểm phân biệt tạo thành cấp số cộng khi và chỉ khi phương trình x3-3x2-1= m có ba nghiệm phân biệt lập thành cấp cố cộng.
Suy ra đường thẳng y=m đi qua điểm uốn của đồ thị y=x3-3x2-1 (do đồ thị (C) nhận điểm uốn làm tâm đối xứng).
Mà điểm uốn của y= x3-3x2-1 là I(1 ; -3) .
Suy ra m=-3.
Chọn C.
+ Đồ thị C cắt trục hoành tại điểm phân biệt tạo thành cấp số cộng khi và chỉ khi phương trình x3- 3x2- 1=m có ba nghiệm phân biệt lập thành cấp cố cộng.
+ Suy ra đường thẳng y= m đi qua điểm uốn của đồ thị y= x3- 3x2- 1
(do đồ thị (C) nhận điểm uốn làm tâm đối xứng).
+ Mà điểm uốn của đồ thị đã cho là I( 1 ; -3)
( hoành độ điểm uốn là nghiệm phương trình y’’= 0 hay y’’= 6x-6=0 do đó x= 1 ; y= -3)
Suy ra m= -3.
Chọn C.
Phương trình hoành độ giao điểm: x4-(3m+4) x2+ m2 = 0 ( 1)
Đặt t= x2, phương trình trở thành: t2-(3m+4)t+ m2 = 0 ( 2)
C cắt trục hoành tại bốn điểm phân biệt khi và chỉ khi ( 1) có bốn nghiệm phân biệt
Khi đó ( 2) có hai nghiệm dương phân biệt
+ Khi đó phương trình *(2) có hai nghiệm 0<t1< y2. Suy ra phương trình (1) có bốn nghiệm phân biệt là x 1 = - t 2 < x 2 = - t 1 < x 3 = t 1 < x 4 = - t 2 . Bốn nghiệm x1; x2; x3; x4 lập thành cấp số cộng
⇔ x 2 - x 1 = x 3 - x 2 = x 4 - x 3 ⇔ - t 1 + t 2 = 2 t 1 ⇔ t 2 = 3 t 1 ⇔ t 2 = 9 t 1 ( 3 )
Theo định lý Viet ta có t 1 + t 2 = 3 m + 4 ( 4 ) t 1 t 2 = m 2 ( 5 )
Từ (3) và (4) ta suy ra được t 1 = 3 m + 4 10 t 2 = 9 ( 3 m + 4 ) 10 ( 6 ) .
Thay (6) vào (5) ta được
Vậy giá trị m cần tìm làm =12; m= -12/ 19
Chọn B.
Phương trình hoành độ giao điểm: x4-(3m+4)x2+m2 =0 (1)
Đặt t = x2 ≥ 0, phương trình (1) trở thành: t2-(3m+4)t+m2=0 (2)
(C) cắt trục hoành tại bốn điểm phân biệt khi (1) có bốn nghiệm phân biệt
Hay (2) có hai nghiệm dương phân biệt
Khi đó phương trình (2) có hai nghiệm 0<t1<t2 Suy ra phương trình (1) có bốn nghiệm phân biệt là
Bốn nghiệm x1; x2 ; x3; x4 lập thành cấp số cộng
Vậy giá trị m cần tìm là m=12; m=-12/19; có 1 giá trị nguyên của m thỏa mãn yêu cầu đề bài.
Chọn B.
Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)
Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)
(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt
Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)
Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \) là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)
\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :
\(x_2-x_1=x_3-x_2=x_4-x_3\)
\(\Leftrightarrow t_2=9t_1\left(a\right)\)
Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)
Từ (a) và (b) ta có : \(9m^2-14m-39=0\)
Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)
D