K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
10 tháng 1 2022

ta có 

\(y'=3x^2-6x=3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

y' >0 khi \(x\in\left(-\infty,0\right)\cup\left(2,+\infty\right)\)

Vậy hàm đồng biến trên hai khoảng là \(\left(-\infty,0\right)\cup\left(2,+\infty\right)\)

25 tháng 9 2021

có 5 điểm cực trị

17 tháng 12 2016

Điểm cực tiểu A(0;-2), điểm cực đại B(2;2)

Mình không hiểu đề bài yêu cầu tìm đường thẳng đi qua điểm A và B, đi qua cả A và B hay là các tiếp tuyến tại A và B?

17 tháng 12 2016

đề bài chỉ vậy thôi

25 tháng 3 2016

a) Xét phương trình \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)

Ta có \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2a\ge0\) với mọi a

Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lĩ)

Vậy \(\Delta'>0\Rightarrow f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số có cực đại và cực tiểu

b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a;x_1x_2=-4\left(1+\cos2a\right)\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)\)

                                                 \(=9+8\cos^2a-6\sin a\cos a\)

                                  \(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2\)   

                                  \(=18-\left(3\sin a+\cos a\right)^2\le18\)          

31 tháng 3 2017

1. a) Tập xác định : D = R; y' = 3 - 2x => y' = 0 ⇔ x = \(\dfrac{3}{2}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng (-∞; \(\dfrac{3}{2}\)); nghịch biến trên khoảng ( \(\dfrac{3}{2}\); +∞ ).

b) Tập xác định D = R;
y'= x2 + 6x - 7 => y' = 0 ⇔ x = 1, x = -7.

Bảng biến thiên :

Hàm số đồng biến trên các khoảng (- ; -7), (1 ; +) ; nghịch biến trên các khoảng (-7 ; 1).

c) Tập xác định : D = R.

y' = 4x3 - 4x = 4x(x2 - 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.

Bảng biến thiên: tự vẽ.

Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +) ; nghịch biến trên các khoảng (- ; -1), (0 ; 1).

d) Tập xác định : D = R. y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = \(\dfrac{2}{3}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng ( 0 ; \(\dfrac{2}{3}\) ) ; nghịch biến trên các khoảng (- ; 0), ( \(\dfrac{2}{3}\); +).

31 tháng 3 2017

1. a) Tập xác định : D = R; y' = 3 - 2x => y' = 0 ⇔ x = \(\dfrac{3}{2}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng (-∞; \(\dfrac{3}{2}\)); nghịch biến trên khoảng ( \(\dfrac{3}{2}\); +∞ ).

b) Tập xác định D = R;
y'= x2 + 6x - 7 => y' = 0 ⇔ x = 1, x = -7.

Bảng biến thiên :

Hàm số đồng biến trên các khoảng (-∞ ; -7), (1 ; +∞) ; nghịch biến trên các khoảng (-7 ; 1).

c) Tập xác định : D = R.

y' = 4x3 - 4x = 4x(x2 - 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.

Bảng biến thiên: tự vẽ.

Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +∞) ; nghịch biến trên các khoảng (-∞ ; -1), (0 ; 1).

d) Tập xác định : D = R. y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = 2323.

Bảng biến thiên :

Hàm số đồng biến trên khoảng ( 0 ; \(\dfrac{2}{3}\) ) ; nghịch biến trên các khoảng (-∞ ; 0), ( \(\dfrac{2}{3}\); +∞).

29 tháng 11 2022

Câu 1:

\(y=2\cdot\left(\dfrac{1}{2}sinx-cos\cdot\dfrac{\sqrt{3}}{2}\right)=2\cdot sin\left(x-\dfrac{pi}{3}\right)\)

=>-2<=y<=2

y=2 khi x-pi/3=pi/2+k2pi

=>x=5/6pi+k2pi