Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2y′=f′(x)=−2(x−1)2⇒f′(2)=−2(2−1)2=−2
Suy ra phương trình tiếp tuyến cần tìm là:
y – 3 = -2(x – 2) ⇔ y = -2x + 7
b) Ta có: y’ = f’(x) = 3x2 + 8x ⇒ f’(-1) = 3 – 8 = -5
Mặt khác: x0 = -1 ⇒ y0 = -1 + 4 – 1 = 2
Vậy phương trình tiếp tuyến cần tìm là:
y – 2 = -5 (x + 1) ⇔ y = -5x – 3
c) Ta có:
y0 = 1 ⇒ 1 = x2 – 4x + 4 ⇒ x02 – 4x0 + 3 = 0 ⇒ x0 = 1 hoặc x0 = 3
f’(x) = 2x – 4 ⇒ f’(1) = -2 và f’(3) = 2
Vậy có hai tiếp tuyến cần tìm có phương trình là:
y – 1 = -2 (x – 1) ⇔ y = -2x + 3
y – 1 = 2 (x – 3) ⇔ y = 2x – 5
a. \(y'\left(x_0\right)=-2x_0+3\)
b. phương trình tiếp tuyến tại x0 =2 là
\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)
c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)
d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1
hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)
y' = - .
a) Ta có: \(y'\left(x_0\right)=k\Leftrightarrow\) y' = -4. \(\Rightarrow\)k= -4. Vậy phương trình tiếp tuyến của hypebol tại điểm (; 2) là y - 2 = -4(x - ) hay y = -4x + 4.
b)Ta có:\(y'\left(x_0\right)=k\Leftrightarrow\) y' (-1) = -1.\(\Rightarrow\) k= -1. Ngoài ra, ta có y(-1) = -1. Vậy phương trình tiếp tuyến tại điểm có tọa độ là -1 là
y - (-1) = -[x - (-1)] \(\Leftrightarrow\) y = -x - 2.
c) Gọi x0 là hoành độ tiếp điểm. Ta có
y' (x0) = - <=> - = - <=> x02 = 4 <=> x0 = ±2.
Với x0 = 2 ta có y(2) = , phương trình tiếp tuyến là
y - = - (x - 2) \(\Leftrightarrow\) y = x + 1.
Với x0 = -2 ta có y (-2) = - , phương trình tiếp tuyến là
y - = - [x - (-2)] \(\Leftrightarrow\) y = - x -1
y' = 3x2.
a)Ta có: \(y'\left(x_0\right)=k\Leftrightarrow\) y' (-1) = 3. \(\Rightarrow\) k=3. Vậy phương trình tiếp tuyến tại điểm (-1;-1) là : y - (-1) = 3[x - (-1)] \(\Leftrightarrow\) y = 3x+2.
b) Ta có:\(y'\left(x_0\right)=k\Leftrightarrow\)y' (2) = 12. \(\Rightarrow\) k=12. Ngoài ra ta có y(2) = 8. Vậy phương trình tiếp tuyến tại điểm có hoành độ bằng 2 là:
y - 8 = 12(x - 2) \(\Leftrightarrow\) y = 12x -16.
c) Gọi x0 là hoành độ tiếp điểm. Ta có:
y' (x0) = 3 <=> 3x02 = 3 <=> x02= 1 <=> x0 = ±1.
Với x0 = 1 ta có y(1) = 1, phương trình tiếp tuyến là
y - 1 = 3(x - 1) \(\Leftrightarrow\) y = 3x - 2.
Với x0 = -1 ta có y(-1) = -1, phương trình tiếp tuyến là
y - (-1) = 3[x - (-1)] \(\Leftrightarrow\) y = 3x + 2
TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06)
a: \(y=-x^2+3x-2\)
=>\(y'=-\left(2x\right)+3\cdot1\)
=>y'=-2x+3
=>\(f'\left(x_0\right)=-2\cdot x_0+3\)
b: \(f'\left(2\right)=-2\cdot2+3=-4+3=-1\)
\(f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến của (P) tại điểm có hoành độ x=2 là:
\(y-f\left(2\right)=f'\left(2\right)\left(x-2\right)\)
=>\(y-0=-1\left(x-2\right)=-x+2\)
=>y=-x+2
c: Đặt y=0
=>\(-x^2+3x-2=0\)
=>\(x^2-3x+2=0\)
=>(x-2)(x-1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
TH1: x=2
\(f'\left(2\right)=-2\cdot2+3=-1;f\left(2\right)=-2^2+3\cdot2-2=0\)
Phương trình tiếp tuyến tại điểm có hoành độ x=2 là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2
TH2: x=1
\(f'\left(1\right)=-2\cdot1+3=1\)
f(1)=0
Phương trình tiếp tuyến tại điểm có hoành độ x=1 là:
y-f(1)=f'(1)(x-1)
=>y-0=1(x-1)
=>y=x-1
d: Gọi phương trình tiếp tuyến cần tìm là (d): y=ax+b(a<>0)
Vì (d) vuông góc với y=x+3 nên a*1=-1
=>a=-1
=>y=-x+b
=>f'(x)=-1
=>-2x+3=-1
=>-2x=-4
=>x=2
f(2)=-2^2+3*2-2=0
f'(2)=-1
Phương trình tiếp tuyến là:
y-f(2)=f'(2)(x-2)
=>y-0=-1(x-2)
=>y=-x+2