Cho hàm số y = x 3 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Đáp án D

Điều kiện để hai điểm cực trị nằm về hai phía của trục hoành  PT  y = 0    có ba nghiệm phân biệt. Xét PT

x 3 + 1 − 2 m x 2 + 2 2 − m x + 4 = 0 ⇔ x 3 + x 2 − 2 m x 2 + 2 m x + 4 x + 4 = 0 ⇔ x + 1 x 2 − 2 m x + 4 = 0

Để  PT này có ba nghiệm phân biệt thì 

Δ ' = m 2 − 4 > 0 − 1 2 − 2 m . − 1 + 4 ≠ 0 ⇔ m ∈ − ∞ ; − 2 ∪ 2 ; + ∞ m ≠ − 5 2

27 tháng 11 2019

Đáp án là B 

3 tháng 9 2018

Chọn đáp án B

Hoành độ giao điểm của đồ thị hàm số đã cho và trục hoành là nghiệm của phương trình :

Để đồ thị hàm số đã cho có hai điểm cực trị nằm về hai phía của trục hoành

Phương trình (*) có hai nghiệm phân biệt khác 1

20 tháng 4 2017

 

3 tháng 6 2018

Đáp án B 

11 tháng 6 2017

Đáp án C

y ' = x 2 − 6 m x ; y ' = 0 ⇔ x 1 = 0 x 2 = 6 m .

Đồ thị hàm số có điểm cực đại, cực trị ⇔ y ' = 0  có hai nghiệm phân biệt ⇔ m ≠ 0 .

Các điểm cực trị nằm về hai phía của trục hoành  ⇔ y 1 y 2 < 0

⇔ m − 36 m 3 + m < 0 ⇔ m 2 − 36 m 2 + 1 < 0 ⇔ m > 1 6 .

15 tháng 5 2018

14 tháng 7 2019

Đáp án B.

Phương pháp: Tìm điều kiện để  phương trình hoành độ  giao điểm có ba nghiệm phân biệt thỏa mãn  x A = 2 , hoặc  x B < - 1 < x C < 1  hoặc  - 1 < x B < 1 < x C

Cách giải:

Đồ thị hàm số  y = x 3 - 2 ( m + 1 ) x 2 + ( 5 m + 1 ) x - 2 m - 2 luôn đi qua điểm A(2;0)

Xét phương trình hoành độ giao điểm

x 3 - 2 ( m + 1 ) x 2 + ( 5 m + 1 ) x - 2 m - 2 = 0

Để phương trình có 3 nghiệm phân biệt ó pt (*) có 2 nghiệm phân biệt khác 2

Giả sử  x B ;   x C ( x B < x C )  là 2 nghiệm phân biệt của phương trình (*).

Để hai điểm B, C một điểm nằm trong một điểm nằm ngoài đường tròn x2 + y2 = 1

TH1: 

TH2: 

Kết hợp điều kiện ta có: 

Lại có m ∈ [–10;100] 

=> Có 108 giá trị m nguyên thỏa mãn yêu cầu bái toán

2 tháng 4 2019

Đáp án A

16 tháng 9 2018