Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)
\(\Leftrightarrow x^2-3x+2-m=0\)
Có \(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)
- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)
Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)
- Ta có : \(OA^2+OB^2=10\)
\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)
\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)
\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)
\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)
\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)
\(\Leftrightarrow2m^2+10m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)
- Kết hợp ĐK (1) => m = 0 ( TM )
Vậy ...
a, Bảng biến thiên:
Đồ thị hàm số:
b, \(f\left(x\right)>0\Leftrightarrow x\in\left(-\infty;-3\right)\cup\left(-1;+\infty\right)\)
\(f\left(x\right)< 0\Leftrightarrow x\in\left(-3;-1\right)\)
c, Yêu cầu bài toán là gì vậy:v
d, Phương trình hoành độ giao điểm của \(\left(P\right);\left(d\right)\):
\(x^2+4x+3=2x+m-5\)
\(\Leftrightarrow x^2+2x+8-m=0\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt
\(\Delta'=1-\left(8-m\right)=m-7>0\Leftrightarrow m>7\)
Phương trình hoành độ giao điểm: x 2 − 2 x − 2 = x + m ⇔ x 2 − 3 x − 2 − m = 0
(d) cắt (P) tại hai điểm phân biệt A, B ⇔ Δ > 0 ⇔ 17 + 4 m > 0 ⇔ m > − 17 4
Giả sử (*) có hai nghiệm x 1 , x 2 thì x 1 + x 2 = − b a = 3 x 1 . x 2 = c a = − m − 2
= 18 − 4 ( − 2 − m ) + 6 m + 2 m 2 = 2 m 2 + 10 m + 26 = 2 m + 5 2 2 + 27 2 ≥ 27 2 với m > − 17 4
Vậy giá trị nhỏ nhất của O A 2 + O B 2 là 27 2 khi m = − 5 2
Đáp án cần chọn là: A