Cho hàm số y = (m – 2)x + 2m – 1 có đồ thị là đường thẳng (d)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2024

y = (m-2)x+2m-1 (a = m-2 và b=2m-1) 

a) Đề hàm số là hàm số bậc nhất thì:

\(a\ne0\Rightarrow m-2\ne0\Leftrightarrow m\ne2\)

b) y=-2x+3 (a'=-2)

Để (d) song song với (d') thì: 

\(a=a'\\ \Rightarrow m-2=-2\Rightarrow m=0\) 

c) Để (d) cắt (d1) tại một điểm trên trục hoành thì: `y=0`

=> (d1) `y=x-2=0=>x=2` 

\(\left(d\right)y=\left(m-2\right)x+2m-1=0\Rightarrow\left(m-2\right)x=1-2m\Rightarrow x=\dfrac{1-2m}{m-2}\)

Mà: `x=2` nên:

\(2=\dfrac{1-2m}{m-2}\Leftrightarrow2\left(m-2\right)=1-2m\Leftrightarrow2m-4=1-2m\\ \Leftrightarrow2m+2m=1+4=5\\ \Leftrightarrow4m=5\\ \Leftrightarrow m=\dfrac{5}{4}\left(tm\right)\)

15 tháng 12 2023

Sửa đề: (d'): y=-4x+3

a: Thay x=0 và y=0 vào y=(m+2)x+m, ta được:

\(0\left(m+2\right)+m=0\)

=>m=0

b:

Sửa đề: Để đường thẳng (d)//(d')

Để (d)//(d') thì \(\left\{{}\begin{matrix}m+2=-4\\m\ne3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-6\\m\ne3\end{matrix}\right.\)

=>m=-6

c: Sửa đề: cắt đường thẳng d'

Để (d) cắt (d') thì \(m+2\ne-4\)

=>\(m\ne-6\)

d: Để (d) trùng với (d') thì

\(\left\{{}\begin{matrix}m+2=-4\\m=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-6\\m=3\end{matrix}\right.\)

=>\(m\in\varnothing\)

19 tháng 8 2021

a, Với \(m\ne2\)

d đi qua A(0;5) <=> \(m=5\)(tm)

b, (d1) : y = 2x + 3 nhé, mình đặt tên luôn ><

d // d1 <=> \(\hept{\begin{cases}m-2=2\\m\ne3\end{cases}}\Leftrightarrow\hept{\begin{cases}m=4\\m\ne3\end{cases}}\Leftrightarrow m=4\)

16 tháng 12 2023

a: Thay x=-1 và y=2 vào (d), ta được:

\(-\left(m-2\right)+n=2\)

=>-m+2+n=2

=>-m+n=0

=>m-n=0(1)

Thay x=3 và y=-4 vào (d), ta được:

\(3\left(m-2\right)+n=-4\)

=>3m-6+n=-4

=>3m+n=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(m-2\right)+n=1-\sqrt{2}\)

=>\(n=1-\sqrt{2}\)

Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)

=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)

c: 2y+x-3=0

=>2y=-x+3

=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)

Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì

\(-\dfrac{1}{2}\left(m-2\right)=-1\)

=>m-2=2

=>m=4

Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)

Thay x=1 và y=3 vào y=2x+n, ta được:

\(n+2\cdot1=3\)

=>n+2=3

=>n=1

d: 3x+2y=1

=>\(2y=-3x+1\)

=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì

\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)

Thay x=1 và y=2 vào (d), ta được:

\(n-\dfrac{3}{2}=2\)

=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)

31 tháng 12 2023

ĐKXĐ: m ≠ 0 và m ≠ 3/2

a) Đồ thị hai hàm số đã cho là hai đường thẳng song song khi:

m = 3 - 2m

m + 2m = 3

3m = 3

m = 1 (nhận)

Vậy m = 1 thì đồ thị hai hàm số đã cho là hai đường thẳng song song

b) Đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau khi

m ≠ 3 - 2m

m + 2m ≠ 3

3m ≠ 3

m ≠ 1

Vậy m ≠ 0; m ≠ 1 và m ≠ 3/2 thì đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau

24 tháng 11 2023

a: Thay x=1 và y=2 vào (d), ta được:

\(1\left(a-2\right)+b=2\)

=>a-2+b=2

=>a+b=4(1)

Thay x=3và y=-4 vào (d), ta được:

\(3\left(a-2\right)+b=-4\)

=>3a-6+b=-4

=>3a+b=2(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=4\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-3a-b=2\\a+b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2a=2\\a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4-a=4+2=6\end{matrix}\right.\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(a-2\right)+b=1-\sqrt{2}\)

=>\(b=1-\sqrt{2}\)

Vậy: (d): \(y=x\left(a-2\right)+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(2+\sqrt{2}\right)\left(a-2\right)+1-\sqrt{2}=0\)

=>\(\left(a-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(a-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(a=\dfrac{3\sqrt{2}}{2}\)

 

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

a) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) song song với nhau thì \(\left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}2m = 2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 2:2\\ - 5 \ne 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 1\\ - 5 \ne 1\end{array} \right.\left( {tm} \right)\)

Vậy \(m = 1\) thì hai đường thẳng \(y = 2mx - 5\) và \(y = 2x + 1\) song song với nhau.

b) Để đường thẳng \(y = 2mx - 5\) và đường thẳng \(y = 2x + 1\) cắt nhau thì \(a \ne a' \Rightarrow 2m \ne 2 \Leftrightarrow m \ne 2:2 \Leftrightarrow m \ne 1\). 

29 tháng 11 2018

chị đã ngủ chưa

29 tháng 11 2018

@NguyễnLamGiang

Bn nghĩ có thể vừa ngủ vừa đăng câu hỏi ư ???

~~~
~~~

HQ
Hà Quang Minh
Giáo viên
12 tháng 9 2023

Đồ thị hai hàm số \(y = 2mx - 2\) và \(y = 6x + 3\) song song với nhau khi:

\(\left\{ \begin{array}{l}2m = 6\\ - 2 \ne 3\end{array} \right. \Rightarrow 2m = 6 \Leftrightarrow m = 6:2 \Leftrightarrow m = 3\)

Vậy \(m = 3\) thì đồ thị hai hàm số \(y = 2mx - 2\) và \(y = 6x + 3\) song song với nhau.

12 tháng 9 2023

Để hai hàm số song song:

=> 2m=6 <=> m=3