: Cho hàm số : y = ( m – 1).x  + m 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Lời giải:

a. Để hàm đồng biến thì $m-1>0\Leftrightarrow m>1$

Để hàm nghịch biến thì $m-1<0\Leftrightarrow m< 1$

b. Để đths đi qua điểm $A(-1;1)$ thì:

$y_A=(m-1)x_A+m$

$\Leftrightarrow 1=(m-1)(-1)+m=1-m+m$

$\Leftrightarrow 1=1$ (luôn đúng)

Vậy đths luôn đi qua điểm A với mọi $m$

c.

$x-2y=1\Rightarrow y=\frac{1}{2}x-\frac{1}{2}$

Để đths đã cho song song với đths $y=\frac{1}{2}x-\frac{1}{2}$ thì:

\(\left\{\begin{matrix} m-1=\frac{1}{2}\\ m\neq \frac{-1}{2}\end{matrix}\right.\Leftrightarrow m=\frac{3}{2}\)

d,

ĐTHS cắt trục hoành tại điểm có hoành độ $\frac{2-\sqrt{3}}{2}$, tức là ĐTHS đi qua điểm $(\frac{2-\sqrt{3}}{2}; 0)$

$\Rightarrow 0=(m-1).\frac{2-\sqrt{3}}{2}+m$

$\Leftrightarrow m=\frac{2-\sqrt{3}}{4-\sqrt{3}}$

21 tháng 5 2018

â ) hàm số y = ( 2m - 1 )x + m + 2 đồng biến <=> a > 0

                                                                       <=> 2m - 1 > 0 

                                                                        <=> 2m     > 1 

                                                                         <=> m     >  \(\frac{1}{2}\)

Vay : khi m > \(\frac{1}{2}\) thì hàm số trên đồng biến 

19 tháng 8 2018

câu hỏi xàm xàm

25 tháng 12 2019

dit me may

9 tháng 4 2017

- Bảng giá trị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

- Vẽ đồ thị:

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.

Giải bài 54 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

23 tháng 4 2017

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5.

23 tháng 4 2017

Bài giải:

a) Hàm số đã cho là y = 2x + b.

Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.

Vậy hàm số đã cho là y = 2x - 3.

b) Hàm số đã cho là y = 3x + b.

Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.

Vậy hàm số đã cho là y = 3x - 4.

c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.

Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.

Vậy hàm số đã cho là y = √3x + 5


9 tháng 5 2017

Lời giải

a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3

b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5

c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1

d) Hàm số bậc nhất

31 tháng 5 2017

a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)

Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)

Đồ thị của hàm số y = ax + b ( a khác 0)

8 tháng 6 2021

a/ Để (1) qua A

⇒1.m+1=4⇒m=3⇒1.m+1=4⇒m=3

⇒y=3x+1⇒y=3x+1

Hàm số đồng biến trên R

b/ x+y+3=0⇔y=−x−3x+y+3=0⇔y=−x−3

Do (1) song song (d) nên chúng có hệ số góc bằng nhau

⇒m=−1

15 tháng 9 2019

a) Hàm số nghịch biến trên R <=> a < 0 

                                                <=> 2m - 1 < 0

                                                <=> 2m      < 1 

                                                <=>  m        < 1/2 

b) Gọi điểm bị cắt là A ( x;y )

cắt trục hoành tại điểm có tọa độ -1 

=> x = -1 ; y = 0 

=> A ( -1 ; 0 ) 

Ta có y = ( 2m - 1)x + m - 1 cắt A ( -1;0 ) 

=> 0 = ( 2m -1 ). ( -1 ) + m - 1

<=> -2m + 1 + m - 1 =0

<=>  -m = 0

<=>  m = 0 

Vậy khi m = 0 thì đồ thị của hàm số cắt trục hoành tại điểm có hoành độ -1 

c) y x 0 1 4 M ( 1;4 ) y=(2m............ -1 E F H

Vì đồ thị của hàm số ( đtchs ) đi qua M(1;4) nên thay điểm M vào đtchs ta được:

         4 = ( 2m - 1).1+m - 1 

<=>  4 =   2m - 1 + m - 1

<=>  4 =     3m - 2

<=>  6 = 3m

<=>  m = 2  ( 1 ) 

Gọi \(E\left(x_E;y_E\right)\)là điểm nằm trên trục tung vào được đtchs đi qua

Và ta có \(x_E=0\) ( vì xE trùng với góc tọa độ )   ( 2 ) 

Thay ( 1 ) và ( 2 ) vào đtchs ta được: 

y = ( 2 . 2 - 1 ). 0 + 2 - 1 

y =     2 - 1

y =       1

Áp dụng hệ thức lượng vào tam giác OEF vuông tại O

\(\frac{1}{OH^2}=\frac{1}{OE^2}+\frac{1}{OF^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{1^2}+\frac{1}{\left(-1\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=2\)

\(\Leftrightarrow2OH^2=1\)

\(\Leftrightarrow OH^2=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}OH=\frac{\sqrt{2}}{2}\left(nhận\right)\\OH=-\frac{\sqrt{2}}{2}\left(loại\right)\end{cases}}\)  ( loại -v2/2 vì độ dài không có giá trị âm )

Vậy khoảng cách từ gốc tọa độ O đến đường thẳng đó là \(\frac{\sqrt{2}}{2}\) 

HỌC TỐT  !!!!