\(\sqrt{2-x}\sqrt{x+2}\)

a, Tìm tập xác định của hàm số.

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

Answer:

a. ĐK để biểu thức có nghĩa

\(\hept{\begin{cases}2-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-2\end{cases}}\Leftrightarrow-2\le x\le2\left(or\left|x\right|\le2\right)}\)

b. \(f\left(a\right)=\sqrt{2-a}+\sqrt{a+2};f\left(-a\right)=\sqrt{2-\left(-a\right)}+\sqrt{-a+2}=\sqrt{2-a}+\sqrt{a+2}\)

\(\Rightarrow f\left(a\right)=f\left(-a\right)\)

c. \(y^2=\left(\sqrt{2-x}\right)^2+2\sqrt{2-x}.\sqrt{2+x}+\left(\sqrt{2+x}\right)^2=2-x+2\sqrt{4-x^2}+2+x=4+2\sqrt{4-x^2}\ge4\)

Đẳng thức xảy ra khi \(x=\pm2\)

Giá trị nhỏ nhất của y là 2

9 tháng 2 2022

a: \(TXĐ=D=R\)

b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)

\(f\left(0\right)=\sqrt{0+1}=1\)

\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)

\(f\left(2\right)=\sqrt{3}\)

9 tháng 2 2022

a, đk : \(\hept{\begin{cases}2-x\ge0\\x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-2\end{cases}}\Leftrightarrow-2\le x\le2\)

b, Gỉa sử f(a) = f(-a) 

\(\sqrt{2-a}+\sqrt{a+2}=\sqrt{2-\left(-a\right)}+\sqrt{-a+2}\)*đúng* 

Vậy ta có đpcm 

c, Ta có : \(y^2=2-x+x+2+2\sqrt{4-x^2}=4+2\sqrt{4-x^2}\)

Do \(2\sqrt{4-x^2}>0\Rightarrow4+2\sqrt{4-x^2}>4\)với -2 =< x =< 2 

Vậy y^2 > 4 

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

19 tháng 10 2020

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)

và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))

* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)

* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)

c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:

+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)

+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)

+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên 

d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)\(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)

f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)

Vậy x = 0 thì f(x) = f(2x)

a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)

c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)

31 tháng 5 2017

Hàm số bậc nhất