K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2020

\(a=m^2-2m+3=\left(m-1\right)^2+2>0\) \(\forall m\)

\(\Rightarrow\) Hàm số đồng biến khi \(x>0\)

Vậy \(x_1>x_2>0\Rightarrow f\left(x_1\right)>f\left(x_2\right)\)

\(\sqrt{5}>\sqrt{2}>0\Rightarrow f\left(\sqrt{5}\right)>f\left(\sqrt{2}\right)\)

4 tháng 3 2020

\(m^2-2m+1+2=\left(m-1\right)^2+2>0\left(\forall m\right)\)

\(x^2\ge0\left(\forall x\right)\)

\(\Rightarrow\left(m^2-2m+3\right)x^2\ge0\)

\(\Rightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)

4 tháng 3 2020

Ta có : \(m^2-2m+3=m^2-2m+1+2\)

\(=\left(m-1\right)^2+2\ge2\) \(\left(Do\left(m-1\right)^2>0\right)\)

Nên khi x > 0 thì hàm số trên đồng biến.

Do \(\sqrt{2}< \sqrt{5}\Leftrightarrow f\left(\sqrt{2}\right)< f\left(\sqrt{5}\right)\)

NV
13 tháng 10 2019

Ta có \(4m-m^2-5=-\left(m-2\right)^2-1< 0\) \(\forall m\)

\(\Rightarrow f\left(x\right)\) nghịch biến trên R \(\Rightarrow f\left(a\right)>f\left(b\right)\Leftrightarrow a< b\)

\(2-\sqrt{2019}>2-\sqrt{2020}\Rightarrow f\left(2-\sqrt{2019}\right)< f\left(2-\sqrt{2020}\right)\)

13 tháng 4 2017

Với x>0 để hàm số đồng biến thì 2m-1>0<=> m>1/2

4 tháng 4 2017

a) Vẽ đồ thị hàm số y = x2.

b) Ta có y = f(x) = x2 nên

f(-8) = (-8)2 = 64; f(-1,3) = (-1,3)2 = 1,69; f(-0,75) = (-0,75)2 = 0,5625; f(1,5) = 1,52 = 2,25.

c) Theo đồ thị ta có:

(0,5)2 ≈ 0,25

(-1,5)2 ≈ 2,25

(2,5)2 ≈ 6,25

d) Theo đồ thị ta có: Điểm trên trục hoành √3 thì có tung độ là y = (√3)2 = 3. Suy ra điểm biểu diễn √3 trên trục hoành bằng 1,7. Tương tự điểm biểu diễn √7 gồm bằng 2,7.



10 tháng 9 2018

giúp mk vs ak