\(\left\{{}\begin{matrix}\frac{\sqrt{5x+3}-\sqrt{2x-1}\left(x< 1\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2019

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\frac{\sqrt[3]{5x+3}-2+2-\sqrt{2x+2}}{x-1}=\lim\limits_{x\rightarrow1^-}\frac{\frac{5\left(x-1\right)}{\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4}-\frac{2\left(x-1\right)}{2+\sqrt{2x+2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1^-}\left(\frac{5}{\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4}-\frac{2}{2+\sqrt{2x+2}}\right)=-\frac{1}{12}\)

\(\lim\limits_{x\rightarrow1^+}=\lim\limits_{x\rightarrow1^+}m.sin\left(\frac{\pi x}{2}+2019\right)=\)

Đến đây lại thêm vấn đề nữa, \(sin\left(\frac{\pi x}{2}+2019\right)\) hay \(sin\left(\frac{\pi x}{2}+2019\pi\right)\) bạn?

NV
19 tháng 5 2019

Bạn ghi đề sai thì phải, nhìn hàm khi \(x< 1\) thì \(\lim\limits_{x\rightarrow1^-}f\left(x\right)\) không tồn tại (ko phải dạng vô định \(\frac{0}{0}\), khi thay x=1 vào tử số ra khác 0)

18 tháng 4 2021

1/ \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(x+1\right)=f\left(2\right)=3\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\lim\limits_{x\rightarrow2^-}\dfrac{x-1}{x^2+2x+4}=\dfrac{1}{12}\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(2\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)

=> ham so gian doan tai x=2

2/ \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=2a-1\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{3x-2-4}{\left(x-2\right)\left(\sqrt{3x-2}+2\right)}=\lim\limits_{x\rightarrow2^+}\dfrac{3}{\sqrt{3x-2}+2}=\dfrac{3}{4}\)

De ham so lien tuc tai x=2

\(\Leftrightarrow\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)\Leftrightarrow2a-1=\dfrac{3}{4}\Leftrightarrow a=\dfrac{7}{8}\)

NV
13 tháng 3 2020

a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)

\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)

b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)

\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)

\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)

30 tháng 7 2019
https://i.imgur.com/qOszLcC.jpg
NV
30 tháng 8 2020

Thay \(y=0\Rightarrow f\left(x\right)=f\left(x\right)+f\left(0\right)\Rightarrow f\left(0\right)=0\)

Đặt \(g\left(x\right)=f\left(x\right)-x^2\Rightarrow g\left(0\right)=0\)

\(g\left(x+y\right)=f\left(x+y\right)-\left(x+y\right)^2=f\left(x\right)+f\left(y\right)+2xy-\left(x+y\right)^2\)

\(=\left[f\left(x\right)-x^2\right]+\left[f\left(y\right)-y^2\right]=g\left(x\right)+g\left(y\right)\)

Vậy quy về tìm hàm \(g\) thỏa \(g\left(x+y\right)=g\left(x\right)+g\left(y\right)\)

\(g\left(x+\Delta x\right)=g\left(x\right)+g\left(\Delta x\right)\Rightarrow g\left(x+\Delta x\right)-g\left(x\right)=g\left(\Delta x\right)-g\left(0\right)\)

\(\Rightarrow\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)

Lấy giới hạn 2 vế: \(\lim\limits_{\Delta x\rightarrow0}\frac{g\left(x+\Delta x\right)-g\left(x\right)}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{g\left(\Delta x\right)-g\left(0\right)}{\Delta x}\)

\(\Leftrightarrow g'\left(x\right)=g'\left(0\right)=const\) (theo định nghĩa về đạo hàm)

\(\Rightarrow g\left(x\right)=c.x\) với c là hằng số

\(\Rightarrow f\left(x\right)=x^2+cx\)

Thay vào pt dưới: \(\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x}\right)=\frac{x^2+cx}{x^4}=\left(\frac{1}{x}\right)^2+c\left(\frac{1}{x^3}\right)\)

\(\Leftrightarrow c\left(\frac{1}{x}\right)=c\left(\frac{1}{x^3}\right)\)

Điều này thỏa mãn với mọi x khi và chỉ khi \(c=0\)

\(\Rightarrow f\left(x\right)=x^2\Rightarrow f\left(\sqrt{2019}\right)=2019\)

31 tháng 8 2020

Nguyễn Việt Lâm a thi VMO k thế :D

NV
20 tháng 5 2020

d/

\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)

Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.

Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?

NV
20 tháng 5 2020

c/

\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)

\(\Leftrightarrow2x\left(1+cosx\right)=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)