K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

Đáp án B.

Nhánh ngoài cùng bên phải của hàm số bậc bốn trùng phương đi xuống nên a < 0.

Đồ thị hàm số bậc bốn trùng phương có ba cực trị nên a.b < 0 => b > 0

Do đồ thị cắt trục Oy tại điểm có tung độ âm nên c < 0

NV
7 tháng 8 2020

Xét \(y=8x^4+ax^2+b\Rightarrow y'=32x^3+2ax\)

\(y'=0\Rightarrow2x\left(16x^2+a\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-\frac{a}{16}\end{matrix}\right.\)

- Nếu \(a>0\Rightarrow y'=0\) có đúng 1 nghiệm \(x=0\)

\(\Rightarrow f\left(x\right)_{max}=f\left(-1\right)=f\left(1\right)=\left|a+b+8\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=-7\\a+b=-9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=-7-a< 0\\b=-9-a< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a>0\\b< 0\end{matrix}\right.\)

Đáp án A đúng luôn, ko cần xét \(a< 0\) nữa

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1 Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0...
Đọc tiếp

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương

A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1

Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung

A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0

Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\)\(x^2_1+x^2_2< 14\) ?

A. 2 B. 1 C. Vô số D. 4

Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị

A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\)

Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo thành 1 tam giác đều

A. \(\sqrt{3}\) B. \(\sqrt[3]{3}\) C. 1 D. 2

Câu 6 : Tìm điều kiện m sao cho đồ thị hàm số y = \(x^4+2mx^2-3\) có 3 điểm cực trị tạo thành 1 tam giác có diện tích nhỏ hơn \(9\sqrt{3}\)

A. \(m>\sqrt{3}\) B. \(m< \sqrt{3}\) C. \(0< m< \sqrt{3}\) D. \(0< m< 1\)

7
AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

$y'=-3x^2+6x+(m-2)=0$

Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$

Hai điểm cực trị cùng dương khi:

\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)

Từ $(1);(2)\Rightarrow -1< m< 2$

Đáp án C.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

Để đths có 2 điểm cực trị thì trước tiên:

$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$

Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$

Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$

$\Leftrightarrow m^2-4< 0$

$\Leftrightarrow -2< m< 2$

Đáp án A.

NV
10 tháng 11 2018

\(a^2+4b^2=23ab\Rightarrow a^2+4ab+4b^2=27ab\Rightarrow\left(a+2b\right)^2=27ab\)

\(\Rightarrow\dfrac{\left(a+2b\right)^2}{9}=3ab\)\(\Rightarrow\left(\dfrac{a+2b}{3}\right)^2=3ab\)

Lấy logarit cơ số c hai vế:

\(log_c\left(\dfrac{a+2b}{3}\right)^2=log_c\left(3ab\right)\)

\(\Rightarrow2log_c\dfrac{a+2b}{3}=log_c3+log_ca+log_cb\)

\(\Rightarrow log_c\dfrac{a+2b}{3}=\dfrac{1}{2}\left(log_ca+log_cb+log_c3\right)\)

11 tháng 11 2018

Bạn ơi tại sao có khoảng trống vậy??? khoảng trống ấy là gì

15 tháng 4 2020

Cho điểm A(a;0;0),B(0;b;0),C(0;0;c)với a,b,c>0

thoả mãn 2/a−2/b+1/c=1. Mặt phẳng (ABC) luôn đi qua điểm có tọa độ

15 tháng 4 2020

sorry hiu

1 một cấp số hạng đầu u1=3 và công bội q=2 . Tổng 7 số hạng đầu tiên của cấp số nhân là 2 cho hàm số f(x) có \(f^,\) (x)=\(x^{2019}.\left(x-1\right)^{2019}.\left(x+1\right),\forall\in R\) . Hàm số đã cho có bao nhiêu cực trị 3 số giao điểm dg cong \(y=x^3-2x^2+x-1\) và đường thẳng \(y=1-2x\) 4 Thể tích khối hộp chữ nhật có ba kích thước lần lượt bằng 3,4,5 bằng 5 cho a,b >0 , nếu \(log_8a+log_4b^2=5\)...
Đọc tiếp

1 một cấp số hạng đầu u1=3 và công bội q=2 . Tổng 7 số hạng đầu tiên của cấp số nhân là

2 cho hàm số f(x) có \(f^,\) (x)=\(x^{2019}.\left(x-1\right)^{2019}.\left(x+1\right),\forall\in R\) . Hàm số đã cho có bao nhiêu cực trị

3 số giao điểm dg cong \(y=x^3-2x^2+x-1\) và đường thẳng \(y=1-2x\)

4 Thể tích khối hộp chữ nhật có ba kích thước lần lượt bằng 3,4,5 bằng

5 cho a,b >0 , nếu \(log_8a+log_4b^2=5\)\(log_4a^2+log_8b=7\) hì giá trị của \(\frac{a}{b}\) bằng

6 tập nghiệm của bất pt \(log_{\frac{1}{5}}^2x-2log_{\frac{1}{5}}x-3>0\)

7 thể tích khối cầu ngoại tiếp bát diện đều có cạnh bằng \(a\sqrt{2}\)

8 mệnh đề nào sau đây sau

A log a < logb =>0<a<b

B lnx<1 => 0<x<1

C lnx>0 => x>1

D log a> logb => a>b>0

9 cho số phức z thỏa mãn \(\overline{z}\) +2i-5=0 . Mô đun của z bằng

10 trong ko gian với hệ trục tọa độ OXYZ cho M (1;-2;1), N (0;1;3) . Phương trình đường thẳng đi qa M,N là

3
NV
9 tháng 7 2020

7.

\(V=\frac{\left(a\sqrt{2}\right)^3\pi.\sqrt{2}}{3}=\frac{4\pi a^3}{3}\)

8.

Mệnh đề B sai

Mệnh đề đúng là: \(lnx< 1\Rightarrow0< x< e\)

9.

\(\overline{z}=5-2i\Rightarrow z=5+2i\Rightarrow\left|z\right|=\sqrt{5^2+2^2}=\sqrt{29}\)

10.

\(\overrightarrow{NM}=\left(1;-3;-2\right)\) nên đường thẳng MN nhận \(\left(1;-3;-2\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=t\\y=1-3t\\z=3-2t\end{matrix}\right.\)

NV
9 tháng 7 2020

4.

\(V=3.4.5=60\)

5.

\(\left\{{}\begin{matrix}log_8a+2log_4b=5\\log_8b+2log_4a=7\end{matrix}\right.\)

\(\Rightarrow log_8a-log_8b-2\left(log_4a-log_4b\right)=-2\)

\(\Leftrightarrow log_8\frac{a}{b}-2log_4\frac{a}{b}=-2\)

\(\Leftrightarrow\frac{1}{3}log_2\frac{a}{b}-log_2\frac{a}{b}=-2\)

\(\Leftrightarrow-\frac{2}{3}log_2\frac{a}{b}=-2\)

\(\Leftrightarrow log_2\frac{a}{b}=3\)

\(\Rightarrow\frac{a}{b}=8\)

6.

\(log_{\frac{1}{5}}x=t\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}log_{\frac{1}{5}}x=-1\\log_{\frac{1}{5}}x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{125}\end{matrix}\right.\)

9.Cho hàm số \(f\left(x\right)=\frac{4m}{\pi}+sin^2x\). Tìm m để nguyên hàm F(x) của f(x) thỏa F(0)=1 và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{8}\): \(A.m=-\frac{4}{3}\) \(B.m=\frac{3}{4}\) \(C.m=\frac{4}{3}\) \(D.m=-\frac{3}{4}\) 10.Trên mặt bàn, có một cái bánh kem hình chuông úp ngược. Mỗi lát cắt của bánh song song với mặt bàn đều là hình tròn, lát cắt dọc đi qua đỉnh bánh có dạng đồ thị của một...
Đọc tiếp

9.Cho hàm số \(f\left(x\right)=\frac{4m}{\pi}+sin^2x\). Tìm m để nguyên hàm F(x) của f(x) thỏa F(0)=1 và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{8}\): \(A.m=-\frac{4}{3}\) \(B.m=\frac{3}{4}\) \(C.m=\frac{4}{3}\) \(D.m=-\frac{3}{4}\)

10.Trên mặt bàn, có một cái bánh kem hình chuông úp ngược. Mỗi lát cắt của bánh song song với mặt bàn đều là hình tròn, lát cắt dọc đi qua đỉnh bánh có dạng đồ thị của một parabol. Người ta muốn cắt ngang cái bánh để chia nó thành hai phần có thể tích bằng nhau. Biết rằng bánh cao 36cm36cm và bán kính đường tròn đáy là 6cm.6cm. Hỏi nhát cắt cần tìm có độ cao hh so với mặt bàn là bao nhiêu cm? A.\(h=9\sqrt{2}\) B.\(h=18\) C.\(h=18\left(2-\sqrt{2}\right)\) D.\(h=18-4\sqrt{2}\)

11.Tính nguyên hàm \(I=\int\frac{dx}{cosx}\) được kết quả \(I=ln\left|tan\left(\frac{x}{a}+\frac{\pi}{b^2}\right)\right|+C\) với \(a,b,c\in Z\). Giá trị của \(a^2-b\) là: A.8 B.0 C.2 D.4

3
29 tháng 3 2019

tick mk cái

18 tháng 10 2022

Chọn B

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?

13 tháng 8 2020

câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi

NV
13 tháng 8 2020

Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?

Đáp án D chứ sao nữa