K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

Thay x = 2 và y = -5 vào hàm số ta có :

-5 = ( 5m + 1 ) . 2 + m + 8

-5 = 10m + 2 + m + 8

-5 = 11m + 10

-11m = 15

     m = -15/11

\(y=\left(5m+1\right)x+m+8\)

\(=5xm+x+m+8\)

Thay x = 2 và y = -5 ta có : 

\(5.2.\left(-5\right)+2-5+8=-5+2-5+8=0\)

Để hàm số y=(2m-3)x-5m+1 là hàm số bậc nhất thì \(2m-3\ne0\)

\(\Leftrightarrow2m\ne3\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

a) Để hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(2m-3>0\)

\(\Leftrightarrow2m>3\)

hay \(m>\dfrac{3}{2}\)

Vậy: Khi hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(m>\dfrac{3}{2}\)

b) Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì \(\left\{{}\begin{matrix}2m-3=3\\-5m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=6\\-5m\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-4}{5}\end{matrix}\right.\Leftrightarrow m=3\left(nhận\right)\)

Vậy: Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì m=3

21 tháng 1 2021

a. Tìm m để hàm số đồng biến.

Để hàm số trên đồng biến. => 2m-3 > 0

                                          <=> 2m > 3

                                          <=> m > 3/2

b. Tìm m để đồ thị hàm số (1) song song đường thẳng y=3x-5 

Để đồ thị hàm số (1)  song song đường thẳng y = 3x - 5 

=>   2m-3 = 3 và -5m+1 khác  - 5

<=> m = 3      và m khác 6/5

<=> m = 3  (tm)

 c. Tính góc tạo bởi đường thẳng y=3x-5 với trục Ox

Gọi góc tạo bởi đường thẳng y=3x-5 với trục Ox là a (a>0)

=> tan a = |3| 

=> tan a = 3

=> góc a = 71o 33'

 

 

 

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3

24 tháng 5 2017

Thay   x   =   − 1 ;   y   =   2   v à o   y   =   ( 3 m   –   2 ) x   +   5 m   t a   đ ư ợ c   2   =   ( 3 m   –   2 ) . ( − 1 )   +   5 m

⇔   2 m   =   0 ⇔   m   =   0

Đáp án cần chọn là: A

15 tháng 6 2015

bạn hơi phân biệt giới tính quá đấy, có con trai cũng thích công chúa sinh đôi mà

huống chi mk thik naruto

19 tháng 11 2021

Để hàm số đã cho đồng biến thì \(m^2-5m-6>0\)\(\Leftrightarrow m^2+m-6m-6>0\)\(\Leftrightarrow m\left(m+1\right)-6\left(m+1\right)>0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)>0\)

Trường hợp 1: \(\hept{\begin{cases}m+1>0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m>6\end{cases}}\Rightarrow m>6\)

Trường hợp 2: \(\hept{\begin{cases}m+1< 0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m< 6\end{cases}}\Rightarrow m< -1\)

Vậy để hàm số đã cho đồng biến thì \(m>6\)hoặc \(m< -1\)

Để hàm số đã cho nghịch biến thì \(m^2-5m-6< 0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)< 0\)

Trường hợp 1: \(\hept{\begin{cases}m+1< 0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>6\end{cases}}\)(loại vì m không thể vừa nhỏ hơn -1 lại vừa lớn hơn 6)

Trường hợp 2: \(\hept{\begin{cases}m+1>0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 6\end{cases}}\Rightarrow-1< m< 6\)

Vậy để hàm số đã cho nghịch biến thì \(-1< m< 6\)

11 tháng 8 2020

Xét hàm số : \(y=\left(5m+1\right)x+m+8\)

Để \(\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\) . Thay vào hàm số ta có :

\(-5=\left(5m+1\right).2+m+8\)

\(\Leftrightarrow-5=10m+2+m+8\)

\(\Leftrightarrow-5-2-8=10m+m\)

\(\Leftrightarrow-15=11m\Leftrightarrow m=-\frac{15}{11}\)

Vậy....

15 tháng 6 2015

Hàm số có dạng y = ax + b đồng biến nếu a > 0; nghịch biến nếu a < 0

(Đồng biến nghĩa là: Nếu x1 < x2 thì y1 < y2) (Em xem lại trong SGK 9 có nhắc)

Để hàm số đồng biến trên R <=> 3m2 + 5m + 2 > 0

<=> 3m2 + 3m + 2m + 2 > 0

<=> 3m(m +1) + 2.(m+1) > 0 

<=> (3m +2).(m +1) > 0

=> 3m + 2 và m + 1 cùng dấu

TH1: 3m +2 > 0 và m + 1 > 0

=> m > -2/3 và m > -1 => m > -2/3

TH2: 3m + 2 < 0 và m + 1 < 0

=> m < -2/3 và m < -1 => m < -1

Vậy với m > -2/3 hoặc m < -1 thì hàm số đồng biến

16 tháng 8 2021

Ta có : tg60=m-1

\({\sqrt{3}=m-1} \) \(->m=\sqrt{3} +1\)

\(tan120=3-2m <=> -\sqrt{3}=3-2m \)

m=\(\frac{3+\sqrt{3}}{2}\)