Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (H) có các đường tiệm cận là:
- Tiệm cận ngang y = -1
- Tiệm cận đứng x = -1
hai đường tiềm cận này cắt nhau tại điểm I(-1; -1).
Hình (H') có hai đường tiệm cận cắt nhau tại I'(2;2) nên ta cần phép tịnh tiến theo vector \(\overrightarrow{II'}=\left(2-\left(-1\right);2-\left(-1\right)\right)=\left(3;3\right)\)
b) Hình (H') có phương trình là:
\(y+3=\dfrac{3-\left(x+3\right)}{\left(x+3\right)+1}\) hay là \(y=\dfrac{-4x-12}{x+4}\)
Hình đối xứng với (H') qua gốc tọa độ có phương trình là:
\(-y=\dfrac{-4\left(-x\right)-12}{-x+4}\) hay là: \(y=\dfrac{4x-12}{-x+4}\)
a) Từ đồ thị hàm số (H), để có hình (H’) nhận y = 2 là tiệm cận ngang và x = 2 là tiệm cận đứng, ta tịnh tiến đồ thị (H) song song với trục Oy lên trên 3 đơn vị, sau đó tịnh tiến song song với trục Ox về bên phải 3 đơn vị, ta được các hàm số tương ứng sau:
b) Lấy đối xứng hình (H’) qua gốc O, ta được hình (H’’) có phương trình là:
1.
\(\lim\limits_{x\rightarrow\infty}\frac{3x-2}{x+1}=3\Rightarrow y=3\) là tiệm cận ngang
2.
\(\lim\limits_{x\rightarrow2}\frac{-2x}{x-2}=\infty\Rightarrow x=2\) là tiệm cận đứng
3.
\(\lim\limits_{x\rightarrow\infty}\frac{x-2}{x^2-1}=0\Rightarrow y=0\) là tiệm cận ngang
4.
\(\lim\limits_{x\rightarrow\infty}\frac{x-1}{x^2-x}=0\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow0}\frac{x-1}{x^2-x}=\infty\Rightarrow x=0\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow1}\frac{x-1}{x^2-x}=1\) hữu hạn nên \(x=1\) ko phải tiệm cận đứng
ĐTHS có 2 tiệm cận
Từ đồ thị hàm số (H), để có hình (H’) nhận y = 2 là tiệm cận ngang và x = 2 là tiệm cận đứng, ta tịnh tiến đồ thị (H) song song với trục Oy lên trên 3 đơn vị, sau đó tịnh tiến song song với trục Ox về bên phải 3 đơn vị, ta được các hàm số tương ứng sau:
1.
Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)
Khi đó:
\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng
Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)
Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)
2.
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ
\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận
Vậy ĐTHS có 2 tiệm cận
3.
Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m=\left\{5;-5\right\}\)
Đề bài sai hoặc đáp án sai
ĐKXĐ: \(0< x\le2\)
Miền xác định của hàm không chứa vô cùng nên hàm ko có tiệm cận ngang
\(\lim\limits_{x\rightarrow0^+}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=-\infty\) nên \(x=0\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=\infty\) nên \(x=1\) là tiệm cận đứng
Lời giải:
Câu 1:
Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)
Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)
\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)
Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)
\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)
Do đó không tồn tại m thỏa mãn.
Câu 2:
Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:
TH1: PT \(x^2-3x-m=0\) có nghiệm kép
\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)
\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)
TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)
\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)
Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)
Vậy tổng giá trị của $m$ thỏa mãn là:
\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)
Lời giải:
Bài 1:
Để ĐTHS \(y=\frac{ax+2}{x-b}\) có tiệm cận ngang \(y=2\) thì cần \(a=2\)
Khi đó \(y=\frac{2x+2}{x-b}\) \(\)
Vì ĐTHS đi qua điểm \(M(2,2)\Rightarrow 2=\frac{4+2}{2-b}\Rightarrow b=-1\)
Ta có \(y=\frac{2x+2}{x+1}=2\) (thỏa mãn đkđb)
Vậy \(a=2,b=-1\)
Bài 2:
Dựa vào định nghĩa , nếu \(\lim_{x\rightarrow \infty}y=t\) thì \(y=t\) là tiệm cận ngang của ĐTHS ($x$ tiến đến âm, dương vô cùng)
Như vậy:
Nếu \(m>0\) thì hàm số xác định với mọi \(x\in\mathbb{R}\), khi đó \(\frac{1}{\sqrt{m}}\) chính là TCN của ĐTHS
Nếu \(m=0\Rightarrow y=x+1\) là hàm đa thức hiển nhiên không có TCN
Nếu \(m<0\) thì hàm số xác định chỉ trong một khoảng nào đó của $x$, khi đó ĐTHS hiển nhiên không có TCN.
Vậy \(m\leq 0\)