K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

copy sai đề rồi nhé

19 tháng 10 2021

Để \(y=\left(2m-5\right)x+m+1\) bậc nhất

\(\Leftrightarrow2m-5\ne0\Leftrightarrow m\ne\dfrac{5}{2}\)

19 tháng 12 2019

1/ta có: y = mx + 3 và y = (2m + 1)x - 5 là hai hs bậc nhất nên:

\(\hept{\begin{cases}m\ne0\\2m+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-\frac{1}{2}\end{cases}}}\)

Đồ thị của hai hs đã cho là 2 đường thẳng song song vs nhau khi và chỉ khi:

\(\hept{\begin{cases}m=2m+1\\3\ne-5\left(HiểnNhien\right)\end{cases}}\)

\(\Leftrightarrow m=-1\)(thỏa mãn)

kết hợp vs điều kiện, ta có m = -1 ; \(m\ne-\frac{1}{2}\)\(m\ne0\)thì đồ thị 2 hs là 2 đường thằng song song

6 tháng 1 2017

(Đề kiểu này quá nặng, đầy kĩ thuật...!!!)

Bước 1: Ta sẽ CM \(K\) có toạ độ \(\left(\frac{-m^2+2m+1}{m^2+1};\frac{-m^2+2m-3}{m^2+1}\right)\) (bước này bạn tự làm nha).

Bước 2: Ta sẽ tìm max của hàm số \(g=\frac{-m^2+2m+1}{m^2+1}\).

Nhân chéo lên: \(-m^2+2m+1=gm^2+g\) hay \(\left(g+1\right)m^2-2m+\left(g-1\right)=0\).

Coi đây là phương trình bậc 2 theo \(m\), giải như bình thường.

\(\Delta'=\left(-1\right)^2-\left(g+1\right)\left(g-1\right)=2-g^2\).

Để \(m\) tồn tại thì pt phải có nghiệm, tức là \(\Delta'=2-g^2\ge0\) (tới đây dừng được rồi).

------

Bước 3: Xét hàm số \(f\left(x\right)=\sqrt{2-x^2}-2\) (với ĐKXĐ \(2-x^2\ge0\)).

Do đó \(g=\frac{-m^2+2m+1}{m^2+1}\) thoả ĐKXĐ này (ở bước 2 mới CM).

Ta tính \(f\left(\frac{-m^2+2m+1}{m^2+1}\right)=\frac{-m^2+2m-3}{m^2+1}\) (biến đổi khá dài nhưng nói chung là làm được).

Tức là \(f\left(x\right)=y\) với \(x,y\) là hoành độ và tung độ của \(K\).

Vậy \(K\) di động trên đồ thị của hàm số \(y=\sqrt{2-x^2}-2\) (mình xin không giải thích tại sao lại nghĩ ra hàm số này).

18 tháng 12 2017

Để 

thì \(\hept{\begin{cases}m-3=-2\\2m-1\ne5\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne3\end{cases}}\)

Vậy để đồ thị hàm số y=(m-3).x+2m-1 song song với đồ thị hàm số y=-2x+5 thì m=1

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Lời giải:
PT hoành độ giao điểm: 
$x^2-(m-1)x-m-1=0(*)$

Để $(P)$ và $(dm)$ cắt nhau tại 1 điểm có tọa độ nguyên  thì PT $(*)$ phải có nghiệm nguyên

Điều này xảy ra khi $\Delta=(m-1)^2+4(m+1)=a^2$ với $a$ là số tự nhiên 

$\Leftrightarrow m^2+2m+5=a^2$

$\Leftrightarrow (m+1)^2+4=a^2$

$\Leftrightarrow 4=(a-m-1)(a+m+1)$

Vì $a+m+1>0$ và $a+m+1> a-m-1$ với mọi $a$ tự nhiên, $m$ nguyên dương nên:

$a+m+1=4; a-m-1=1$

$\Rightarrow m=\frac{1}{2}$ (vô lý)

Vậy không tồn tại $m$ thỏa mãn điều kiện đề bài.

21 tháng 10 2018

Để là hàm số bậc nhất:\(\frac{1}{\sqrt{m-1}}-1\ne0\)    (đK: m>1)

\(\Leftrightarrow\sqrt{m-1}\ne1\Leftrightarrow m-1\ne1\Leftrightarrow m\ne2\)

Vậy  m>1 và m khác 2

2 tháng 5 2017

a, \(\left\{{}\begin{matrix}m\ge0\\\sqrt{m}\ne\sqrt{5}\Leftrightarrow m\ne5\end{matrix}\right.\)

b, Để là hàm số đồng biến thì:\(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}>0\Rightarrow\sqrt{m}+\sqrt{5}>0\Leftrightarrow m>5\)