Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Cô si 4x+\frac{1}{4x}\ge24x+4x1≥2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1⇔x=41). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A≥2−x+14x+3+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A≥4−x+14x+3+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014A≥x+14x−4x+1+2014=x+1(2x−1)2+2014≥2014
Hơn nữa A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x−1=0 \Leftrightarrow x=\dfrac{1}{4}⇔x=41 .
Vậy GTNN = 2014
a) Thay x=-1 vào (P), ta được:
\(y=\left(-1\right)^2=1\)
Thay x=2 vào (P), ta được:
\(y=2^2=4\)
Vậy: M(-1;1) và N(2;4)
Gọi (d):y=ax+b là ptđt đi qua hai điểm M và N
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\-a+b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy: (d): y=x+2
b/ Do (d) cắt (d) tại điểm có hoành độ = 2
=> B(2;y)
Do B(2;y) thuộc (d) => y = 2+2
=> y = 4
=> B(2;4)
Do B(2;4) thuộc (d) => 4 = (m-5)2 + m + 2
<=> 4 = 2m - 10 + m + 2
<=> 4 = 3m - 8
<=> -3m = -12
<=> m = 4
Éo ai chỉ thì tự lực cánh sinh vậy :p
hoành độ giao điểm là nghiệm của phương trình:
x+2=(m-5)x+m+2 (1)
Điểm B là giao điểm có hoàng độ bằng 2 suy ra x=2
Thay x=2 vào phương trình (1) ta được
2+2=(m-5)x2+m+2 suy ra m=4
a) Bảng giá trị:
Đồ thị:
b) Thay y = 100 vào (P) ta được:
\(\dfrac{1}{4}x^2=100\)
\(\Leftrightarrow x^2=100:\dfrac{1}{4}\)
\(\Leftrightarrow x^2=400\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-20\end{matrix}\right.\)
Vậy M(-20; 100) hoặc M(20; 100)
b: y=100
=>1/4x^2=100
=>x^2=400
=>x=20 hoặc x=-20
a: