Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để y<2 thì \(0,5x^2< 2\)
=>x2<4
=>-2<x<4
b: Để y>2 thì 0,5x2>4
=>x2>4
=>x>2 hoặc x<-2
c: Để -2<y<2 thì \(x\in\left(-2;4\right)\cap\left(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\right)=\left(2;4\right)\)
Gọi d1 giao d2 tại A(Xo : Yo)
Vì A thuộc d1 => Yo=Xo+1 (1)
Vì A thuộc d2 => Yo=-Xo+3(2)
Từ (1) và (2) => Yo=2 ; Xo=1 => A(1;2)
Để 3 đường thẳng đồng quy => A thuộc d3
Vì A thuộc d3 =>Yo=mXo+m-1
<=> 2= 2m -1
<=> m=1
a) Vẽ đồ thị hàm số y = x2.
b) Ta có y = f(x) = x2 nên
f(-8) = (-8)2 = 64; f(-1,3) = (-1,3)2 = 1,69; f(-0,75) = (-0,75)2 = 0,5625; f(1,5) = 1,52 = 2,25.
c) Theo đồ thị ta có:
(0,5)2 ≈ 0,25
(-1,5)2 ≈ 2,25
(2,5)2 ≈ 6,25
d) Theo đồ thị ta có: Điểm trên trục hoành √3 thì có tung độ là y = (√3)2 = 3. Suy ra điểm biểu diễn √3 trên trục hoành bằng 1,7. Tương tự điểm biểu diễn √7 gồm bằng 2,7.
Để hàm số đã cho đồng biến thì \(m^2-5m-6>0\)\(\Leftrightarrow m^2+m-6m-6>0\)\(\Leftrightarrow m\left(m+1\right)-6\left(m+1\right)>0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)>0\)
Trường hợp 1: \(\hept{\begin{cases}m+1>0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m>6\end{cases}}\Rightarrow m>6\)
Trường hợp 2: \(\hept{\begin{cases}m+1< 0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m< 6\end{cases}}\Rightarrow m< -1\)
Vậy để hàm số đã cho đồng biến thì \(m>6\)hoặc \(m< -1\)
Để hàm số đã cho nghịch biến thì \(m^2-5m-6< 0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)< 0\)
Trường hợp 1: \(\hept{\begin{cases}m+1< 0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>6\end{cases}}\)(loại vì m không thể vừa nhỏ hơn -1 lại vừa lớn hơn 6)
Trường hợp 2: \(\hept{\begin{cases}m+1>0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 6\end{cases}}\Rightarrow-1< m< 6\)
Vậy để hàm số đã cho nghịch biến thì \(-1< m< 6\)
Để hàm số \(y=\left(m-2\right)x+3\)
a) Đồng biến thì:
\(m-2>0\)
\(\Leftrightarrow\) \(m>2\)
b) Nghịch biến thì:
\(m-2< 0\)
\(\Leftrightarrow\) \(m< 2\)
Vẽ đồ thị hàm số
Dựa vào đồ thị ta thấy:
Để giá trị y < 2 thì -2 < x < 2