K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Dựa vào độ thị ta thấy (0; 0); (2; 2); (-2; 2) nằm trên đồ thị hàm số \(y = \frac{1}{2}{x^2}\)

Ta nhận ra được: \(\begin{array}{l}0 = \frac{1}{2}{.0^2}\\2 = \frac{1}{2}{.2^2}\\2 = \frac{1}{2}.{( - 2)^2}\end{array}\) Vì vậy những điểm có tọa độ \(\left( {x;\frac{1}{2}{x^2}} \right)\) sẽ nằm trên đồ thị.

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?b) Quan sát dạng đồ...
Đọc tiếp

Xét hàm số \(y = S(x) =  - 2{x^2} + 20x(0 < x < 10)\)

a) Trên mặt phẳng tọa độ Oxy, biểu diễn tọa độ các điểm trong bảng giá trị của hàm số lập được ở Ví dụ 1. Nối các điểm đã vẽ lại ta được dạng đồ thị hàm số \(y =  - 2{x^2} + 20x\)trên khoảng (0; 10) như trong Hình 6.10. Dạng đồ thị \(y =  - 2{x^2} + 20x\) có giống với đồ thị của hàm số \(y =  - 2{x^2}\) hay không?

b) Quan sát dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)  trong Hình 6.10, tìm tọa độ điểm cao nhất của đồ thị.

c) Thực hiện phép biến đổi \(y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\) Hãy cho biết giá trị lớn nhất của diện tích mảnh đất được rào chắn. Từ đó suy ra lời giải của bài toán ở phần mở đầu.

1
HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có đồ thị hàm số \(y =  - 2{x^2}\)

 

Nhìn vào 2 đồ thị, ta thấy dạng đồ thị của hàm số \(y =  - 2{x^2} + 20x\)giống với dạng đồ thị \(y =  - 2{x^2}\)

b) Tọa độ điểm cao nhất là \(\left( {5;50} \right)\)

c) Ta có: \(S(x) = y =  - 2{x^2} + 20x =  - 2({x^2} - 10x) =  - 2({x^2} - 2.5.x + 25) + 50 =  - 2{(x - 5)^2} + 50\)

\({(x - 5)^2} \ge 0 \Rightarrow  - 2{(x - 5)^2} + 50 \le 50 \Rightarrow S(x) \le 50\)

Do đó diện tích lớn nhất của mảnh đất rào chắn là 50 \(({m^2})\) khi x = 5.

7 tháng 12 2016

Toán lớp 9.

Bạn ghi lại hàm số đi bạn

30 tháng 3 2017

a) f(x) = (x+2)(x-1)

f(x) > 0 với x < -2 hoặc x > 1

f(x) ≤ 0 với -2 ≤ x ≤ 1

b) y = 2x (x + 2) = 2(x+1)2 – 2

Bảng biến thiên:

Hàm số : y = \(\left(x+2\right)\left(x+1\right)=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)

Bảng biến thiên :

Đồ thị (C1) và (C2)

Hoành độ các giao điểm A và B của (C1) và (C2) là nghiệm của phương trình f(x) = 0 ⇔ x1 = -2, x2 = 1

⇔ A(-2, 0) , B(1, 6)

c) Giải hệ phương trình

\(\left\{{}\begin{matrix}\dfrac{ac-b^2}{4a}\\a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(1\right)^2+b\left(1\right)+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2,b=0,c=8\\a=-\dfrac{2}{9},b=\dfrac{16}{9},c=\dfrac{40}{9}\end{matrix}\right.\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng