Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(x+1) = 3(x+1)2+1
f(x) = 3x2+1
=> f(x+1) - f(x) = 3(x+1)2 +1 - 3x2 - 1 = 3(x2+2x+1) +1 -3x2 -1
= 3x2 +6x +3 + 1 - 3x2 -1 = 6x + 3 (Là hàm số bậc nhất)
=> f(x+1) - f(x) là hàm số bậc nhất.
Answer:
Ta có:
\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)
\(=6x-1-2\sqrt{5}x+\sqrt{5}\)
\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)
Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)
Ta thấy:
\(a=6-2\sqrt{5}\ne0\)
\(b=\sqrt{5}-1\inℝ\)
\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất
\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất
Ta thấy:
Hệ số \(a=6-2\sqrt{5}\)
Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)
Thấy được:
\(6-2\sqrt{5}>0\)
\(\Rightarrow a=6-2\sqrt{5}>0\)
Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)
a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.
b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)
c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:
\(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)
\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)
Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)
Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.
\(f\left(x\right)=3x^2+1\)
\(f\left(x+1\right)=3\left(x+1\right)^2+1\\ f\left(x+1\right)=3\left(x^2+2x+1\right)+1\\ f\left(x+1\right)=3x^2+6x+3+1\\ f\left(x+1\right)=3x^2+6x+4\\ f\left(x+1\right)-f\left(x\right)=3x^2+6x+4-3x^2-1\\ f\left(x+1\right)-f\left(x\right)=6x+3\)
Vậy y = f (x+1) - f (x) là hàm số bậc nhất.
Answer:
a. ĐK để biểu thức có nghĩa
\(\hept{\begin{cases}2-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-2\end{cases}}\Leftrightarrow-2\le x\le2\left(or\left|x\right|\le2\right)}\)
b. \(f\left(a\right)=\sqrt{2-a}+\sqrt{a+2};f\left(-a\right)=\sqrt{2-\left(-a\right)}+\sqrt{-a+2}=\sqrt{2-a}+\sqrt{a+2}\)
\(\Rightarrow f\left(a\right)=f\left(-a\right)\)
c. \(y^2=\left(\sqrt{2-x}\right)^2+2\sqrt{2-x}.\sqrt{2+x}+\left(\sqrt{2+x}\right)^2=2-x+2\sqrt{4-x^2}+2+x=4+2\sqrt{4-x^2}\ge4\)
Đẳng thức xảy ra khi \(x=\pm2\)
Giá trị nhỏ nhất của y là 2