Cho hàm số f(x) và g(x) có đạo hàm trên [1;4] và thỏa mãn hệ thức sau với mọi x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Đáp án C

25 tháng 8 2018

Đáp án C

26 tháng 10 2018

Các nghiệm trên đều là các nghiệm bội lẻ, do đó đều là cực trị của hàm số GBqkE7KiupmK.png  

Xét x = -1 ta có mAqaMtGANpVj.png

từ đó ta có bảng xét dấu g’(x) như sau:

Dựa vào các đáp án ta thấy hàm số y = g(x) nghịch biến trên (0;1)

 

Chọn B

NV
12 tháng 11 2019

\(f\left(x\right)+g\left(x\right)=-x\left[f'\left(x\right)+g'\left(x\right)\right]\)

Đặt \(h\left(x\right)=f\left(x\right)+g\left(x\right)\Rightarrow\left\{{}\begin{matrix}h\left(1\right)=4\\h\left(x\right)=-x.h'\left(x\right)\end{matrix}\right.\)

\(\Rightarrow\frac{h'\left(x\right)}{h\left(x\right)}=-\frac{1}{x}\Rightarrow\int\frac{h'\left(x\right)}{h\left(x\right)}dx=-\int\frac{dx}{x}=-lnx\)

\(\Rightarrow ln\left[h\left(x\right)\right]=ln\left(\frac{1}{x}\right)+C\)

Thay \(x=1\Rightarrow C=ln4\Rightarrow ln\left[h\left(x\right)\right]=ln\left(\frac{1}{x}\right)+ln4=ln\left(\frac{4}{x}\right)\)

\(\Rightarrow h\left(x\right)=\frac{4}{x}\)

\(\Rightarrow I=\int\limits^4_1h\left(x\right)dx=\int\limits^4_1\frac{4}{x}dx=...\)

13 tháng 11 2019

cho em hỏi tại sao h(x) =\(\frac{4}{x}\) mà ko phải là |h(x)| vậy ạ?

NV
12 tháng 11 2019

Bạn coi lại đề bài, có gì đó không ổn

Thay \(x=1\) vào \(g\left(x\right)=-x.f\left(x\right)\) \(\Rightarrow g\left(1\right)=-f\left(1\right)\)

\(\Rightarrow f\left(1\right)+g\left(1\right)=0\) trái với điều kiện \(f\left(1\right)+g\left(1\right)=4\)????

12 tháng 11 2019

dạ em viết nhầm, phải là g(x)=-xf'(x) f(x)=-xg'(x) mới đúng