\(f\left(x\right)=\sqrt{x}\)

a) chứng minh rằng hàm số đồng biến 

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 7 2021

Điều kiện xác định: \(x\ge0\).

Lấy \(x_1>x_2\ge0\).

\(f\left(x_1\right)-f\left(x_2\right)=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}>0\)

Do đó hàm số đồng biến. 

Lần lượt thế tọa độ các điểm vào hàm số ban đầu, ta thấy điểm \(C\left(9,3\right)\)thỏa mãn nên nó thuộc đồ thị của hàm số đã cho, các điểm khác không thuộc. 

19 tháng 8 2017

Cho hàm số y = f(x) = \(\sqrt{x}\)

a) TXĐ: D = \(\left\{x|x\ge0\right\}\), \(x_1\ne x_2\), \(x_1,x_2\in D\)

\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\sqrt{x_1}-\sqrt{x_2}}{x_1-x_2}=\dfrac{x_1-x_2}{\left(x_1-x_2\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)}\)

\(=\dfrac{1}{\sqrt{x_1}-\sqrt{x_2}}>0\)

Vậy hàm số \(y=f\left(x\right)=\sqrt{x}\) đồng biến

b) Những điểm thuộc đồ thị hàm số là:

A(4;2) , C(9;3), D(8;\(2\sqrt{2}\))

Điểm B(2;1) không thuộc đồ thị hàm số

31 tháng 5 2017

Hàm số bậc nhất

a: Thay x=-2 và y=b vào (P), ta được:

\(b=\left(-2\right)^2\cdot0.2=0.8\)

Vì trong (P) thì f(x)=f(-x)

nên A'(2;0,8) thuộc (P)

b: Thay x=c và y=6 vào (P), ta được:

\(0,2c^2=6\)

nên \(c=\sqrt{30}\)

Vì trong (P) thì f(x)=f(-x) nên \(D\left(\sqrt{30};-6\right)\in\left(P\right)\)

9 tháng 5 2017

Lời giải

a) Hàm số bậc nhất đồng biến khi (a>0) => m-3 >0 => m>3

b) A(1;2) => y(1) =2 => (m-3).1=2 => m=5

c) B(1;-2) => y(1) =-2=> (m-3).1=-2 => m=1

d) Hàm số bậc nhất

31 tháng 5 2017

a) Hàm số \(y=\left(m-3\right)x\) đồng biến khi \(m-3>0\Leftrightarrow m>3\)

Hàm số \(y=\left(m-3\right)x\) nghịch biến khi \(m-3< 0\Leftrightarrow m< 3\)

Đồ thị của hàm số y = ax + b ( a khác 0)

22 tháng 4 2017

a) y = 1 - 5x là một hàm số bậc nhất với a = -5, b = 1. Đó là một hàm số nghịch biến vì -5 < 0.

b) y = -0,5x là một hàm bậc nhất với a \(\approx\)-0,5, b = 0. Đó là một hàm số nghịch biến vì -0,5 < 0.

c) y = \(\sqrt{ }\)2(x - 1) + \(\sqrt{ }\)3 là một hàm số bậc nhất với a = \(\sqrt{ }\)2, b = \(\sqrt{ }\)3 - \(\sqrt{ }\)2. Đó là một hàm số đồng biến vì \(\sqrt{ }\)2 > 0.

d) y = 2x2 + 3 không phải là một hàm số bậc nhất vì nó không có dạng y = ax + b, với a \(\ne\) 0.