Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\lim\limits_{x\rightarrow3}\frac{3x^2-11x+6}{x-3}=\lim\limits_{x\rightarrow3}\frac{\left(3x-2\right)\left(x-3\right)}{x-3}=\lim\limits_{x\rightarrow3}\left(3x-2\right)=7\)
Để hàm số liên tục tại \(x=3\)
\(\Leftrightarrow m^2-9=7\Rightarrow m^2=16\Rightarrow m=\pm4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\lim\limits_{x\rightarrow1}\frac{x^3-4x^2+3}{x^2-1}=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x^2-3x-3\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\frac{x^2-3x-3}{x+1}=\frac{1-3-3}{2}=-\frac{5}{2}\)
Để hàm số liên tục tại x=1
\(\Leftrightarrow a+\frac{5}{2}=-\frac{5}{2}\Rightarrow a=-5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có = 22 +2.2 +4 = 12.
Vì nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(m+\frac{1-x}{1+x}\right)=m+1\)
\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\frac{\left(\sqrt{1-x}-\sqrt{1+x}\right)\left(\sqrt{1-x}+\sqrt{1+x}\right)}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}=\lim\limits_{x\rightarrow0^-}\frac{-2x}{x\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)
\(=\lim\limits_{x\rightarrow0^-}\frac{-2}{\sqrt{1-x}+\sqrt{1+x}}=-1\)
Để hàm số liên tục tại x=0
\(\Leftrightarrow\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)
\(\Leftrightarrow m+1=-1\Rightarrow m=-2\)
Bài 2:
Đặt \(f\left(x\right)=4x^4+2x^2-x-3\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên mọi khoảng thuộc R
\(f\left(-1\right)=4>0\) ; \(f\left(0\right)=-3< 0\)
\(\Rightarrow f\left(-1\right).f\left(0\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(-1;0\right)\)
\(f\left(1\right)=2>0\Rightarrow f\left(0\right).f\left(1\right)< 0\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm trên \(\left(0;1\right)\)
Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm trên \(\left(-1;1\right)\)
\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{x^2-5x+6}{x-3}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-2\right)\left(x-3\right)}{x-3}=\lim\limits_{x\rightarrow3}x-2=3-2=1\)
\(f\left(3\right)=5m+11\)
Để hàm số liên tục tại x=3 thì 5m+11=1
=>5m=-10
=>m=-2
\(P=m^2-4=\left(-2\right)^2-4=0\)