\(f\left(x\right)=ax^2+bx+c\) (a>0) đi qua điểm (2;-1).

Hỏi với nhữ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2020

Đề là đồ thị có đỉnh là \(\left(1;2\right)\) thì hợp lí hơn

\(f\left(x\right)+m-2018=0\)

\(\Leftrightarrow f\left(x\right)=2018-m\) là phương trình hoành độ giao điểm của hai đồ thị \(y=m-2018;y=f\left(x\right)\)

Phương trình \(f\left(x\right)+m-2018=0\) có nghiệm duy nhất khi \(2018-m=2\Leftrightarrow m=2016\)

9 tháng 2 2019

Đáp án B

30 tháng 8 2021

B

29 tháng 5 2019

Đáp án A

31 tháng 1 2018

Đáp án C

NV
14 tháng 2 2020

\(\Delta=b^2-4ac\le0\Rightarrow b^2\le4ac\Rightarrow\frac{a}{b}.\frac{c}{b}\ge\frac{1}{4}\)

Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\Rightarrow xy\ge\frac{1}{4}\)

\(F=4x+y\ge4\sqrt{xy}\ge4\sqrt{\frac{1}{4}}=2\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\) hay \(b=c=4a\)