\(f\left(x\right)=2^x-x-4\) . Giá trị của tổng \(f\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

giá trị của : f(0) + f(1) + f(2) + f(3) + f(4) + f(5) + f(6) +f(7) + f(8)

= -3-3-2+1+8+23+54+117+244

= 439

12 tháng 2 2017

ý mk là cái cách lm cơ ????

3 tháng 7 2017

1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)

=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)

=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)

=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)

Ta thấy: \((5x-2)^2\ge0\)

=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)

2. \(f\left(x\right)=4x^2-28x+50\)

=> \(f\left(x\right)=(4x^2-28x+49)+1\)

=> \(f\left(x\right)=(2x-7)^2+1\)

Ta thấy: \((2x-7)^2\ge0\)

=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)

3. \(f\left(x\right)=-16x^2+72x-82\)

=> \(f\left(x\right)=-(16x^2-72x+82)\)

=> \(f\left(x\right)=-(16x^2-72x+81+1)\)

=> \(f\left(x\right)=-[(4x-9)^2+1]\)

Ta thấy: \((4x-9)^2\ge0\)

=> \((4x-9)^2+1\ge1>0\)

=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)

5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)

=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)

=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)

Ta thấy: \((2x-3)^2\ge0\)

\((3y+1)^2\ge0\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)

23 tháng 1 2017

f(0) = a . 0 + b = b

f(f(0)) = f(b) = a . b + b = ab + b

f(f(f(0))) = f(ab + b) = a . (ab + b) + b = a2b + ab + b

f(1) = a . 1 + b = a + b

f(f(1)) = f(a + b) = a . (a + b) + b = a2 + ab + b

f(f(f(1))) = f(a2 + ab + b) = a . (a2 + ab + b) + b = a3 + a2b + ab + b

a3 + a2b + ab + b = 29

a2b + ab + b = 2

=> (a3 + a2b + ab + b) - (a2b + ab + b) = 29 - 2

a3+ a2b + ab + b - a2b - ab - b = 27

a3 = 33

a = 3

8 tháng 3 2016

\(1.\)   Với mọi  \(x+y+z=0\)  \(\left(1\right)\), ta có:  \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)   \(\left(2\right)\)

Thật vậy,  từ  \(\left(1\right)\)  \(\Rightarrow\)  \(x=-\left(y+z\right)\)

                              \(\Leftrightarrow\)  \(x^2=\left[-\left(y+z\right)\right]^2\)

                              \(\Leftrightarrow\)  \(x^2=y^2+2yz+z^2\)

                              \(\Leftrightarrow\)  \(x^2-y^2-z^2=2yz\)

                              \(\Leftrightarrow\)  \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)

                              \(\Leftrightarrow\)   \(x^4+y^4+z^4-2x^2y^2+2y^2z^2-2x^2z^2=4y^2z^2\)

                              \(\Leftrightarrow\)   \(x^4+y^4+z^4=4y^2z^2+2x^2y^2-2y^2z^2+2x^2z^2\)

                              \(\Leftrightarrow\)  \(x^4+y^4+z^4=2\left(x^2y^2+y^2z^2+x^2z^2\right)\)  \(\left(3\right)\)

Cộng  \(x^4+y^4+z^4\)  vào hai vế của đẳng thức  \(\left(3\right)\), ta được đẳng thức \(\left(2\right)\)

Vậy, đẳng thức  \(\left(2\right)\)  đã được chứng minh với mọi  \(x+y+z=0\) 

Khi đó,  \(M=2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=1\)

Do đó,  giá trị  \(M=1\)

                                                              -Charlotte-

8 tháng 3 2016

Nhờ mọi người ghi giúp mình cách giải nhé! Cảm ơn mọi người nhiều.

11 tháng 4 2017

Ta có:

f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)

tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)

từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )

Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì 

=> A=-1.1007-1-0,5=-1008,5

11 tháng 4 2017

Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??

NV
14 tháng 3 2019

\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100^{1-x}}{100^{1-x}+100}\)

Nhân cả tử và mẫu của \(\frac{100^{1-x}}{100^{1-x}+100}\) với \(100^x\) ta được:

\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100}{100+100^x}=\frac{100^x+100}{100^x+100}=1\)

Vậy: \(S=f\left(\frac{1}{2009}\right)+f\left(\frac{2008}{2009}\right)+f\left(\frac{2}{2009}\right)+f\left(\frac{2007}{2009}\right)+...+f\left(\frac{1004}{2009}\right)+f\left(\frac{1005}{2009}\right)\)

\(S=1+1+1+...+1\) (có \(\frac{2008-1+1}{2}=1004\) số 1)

\(S=1004\)