Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)
và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))
* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)
* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)
c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:
+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)
+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)
+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)
Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên
d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\); \(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)
f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)
Vậy x = 0 thì f(x) = f(2x)
a: f(1)=-1,5
f(2)=-6
f(3)=-13,5
=>f(1)>f(2)>f(3)
b: \(f\left(-3\right)=-1,5\cdot9=-13,5\)
f(-2)=-1,5x4=-6
f(-1)=-1,5x1=-1,5
=>f(-3)<f(-2)<f(-1)
c: Hàm số này đồng biến khi x<0 và nghịch biến khi x>0
a: \(TXĐ=D=R\)
b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)
\(f\left(0\right)=\sqrt{0+1}=1\)
\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)
\(f\left(2\right)=\sqrt{3}\)
a, đk : \(\hept{\begin{cases}2-x\ge0\\x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-2\end{cases}}\Leftrightarrow-2\le x\le2\)
b, Gỉa sử f(a) = f(-a)
\(\sqrt{2-a}+\sqrt{a+2}=\sqrt{2-\left(-a\right)}+\sqrt{-a+2}\)*đúng*
Vậy ta có đpcm
c, Ta có : \(y^2=2-x+x+2+2\sqrt{4-x^2}=4+2\sqrt{4-x^2}\)
Do \(2\sqrt{4-x^2}>0\Rightarrow4+2\sqrt{4-x^2}>4\)với -2 =< x =< 2
Vậy y^2 > 4
a) TXĐ:\(x\ge0\)
b)\(f\left(4-2\sqrt{3}\right)=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}\)\(=\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}}=\frac{3-2\sqrt{3}}{3}\)
\(f\left(a^2\right)=\frac{\left(-a\right)-1}{\left(-a\right)+1}=\frac{-1-a}{1-a}\)
c)\(f\left(x\right)\in Z\Rightarrow1-\frac{2}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\sqrt{x}+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0;1\right\}TM\)
d)\(f\left(x\right)=f\left(x^2\right)\)
\(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\left|x\right|-1}{\left|x\right|+1}=\frac{x-1}{x+1}\)
\(\Rightarrow\left(x+1\right)\left(\sqrt{x}-1\right)=\left(x-1\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow-x+\sqrt{x}=x-\sqrt{x}\)
\(\Rightarrow x=0;1\)(TM)
+KL...
#Walker
a) \(3+\sqrt{2x-3}=x\)
\(\Leftrightarrow\sqrt{2x-3}=x-3\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2x-3=\left(x-3\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\x^2-8x+12=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x=2;x=6\end{cases}}\)
\(\Leftrightarrow x=6\)
b) Ta có: \(F\left(2\right)=a\left(2\right)^3+b.2-1=2009\)
\(\Rightarrow a.\left(2\right)^3+b.2=2009+1=2010\)
Suy ra \(F\left(-2\right)=a.\left(-2\right)^3+b\left(-2\right)-1\)
\(=-\left[a.\left(2\right)^3+b.2\right]-1\)
\(=-\left[2010\right]-1\)
\(=-2011\)
c) Nhẩm thấy x = 1 là nghiệm nên ta phân tách vế trái thành nhân tử có một thừa số là (x -1).
Ta chia đa thức vế trái cho \(x-1\) thì được thương là \(\left(m+1\right)x^2+4mx+4m-1\).
Vậy phương trình tích là:
\(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)
Answer:
a. ĐK để biểu thức có nghĩa
\(\hept{\begin{cases}2-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-2\end{cases}}\Leftrightarrow-2\le x\le2\left(or\left|x\right|\le2\right)}\)
b. \(f\left(a\right)=\sqrt{2-a}+\sqrt{a+2};f\left(-a\right)=\sqrt{2-\left(-a\right)}+\sqrt{-a+2}=\sqrt{2-a}+\sqrt{a+2}\)
\(\Rightarrow f\left(a\right)=f\left(-a\right)\)
c. \(y^2=\left(\sqrt{2-x}\right)^2+2\sqrt{2-x}.\sqrt{2+x}+\left(\sqrt{2+x}\right)^2=2-x+2\sqrt{4-x^2}+2+x=4+2\sqrt{4-x^2}\ge4\)
Đẳng thức xảy ra khi \(x=\pm2\)
Giá trị nhỏ nhất của y là 2
Bài 1:
a) Ta có \(f\left(a\right)=a^2\),\(\forall a\)
\(f\left(-a\right)=a^2\) \(\forall a\)
\(\Rightarrow f\left(a\right)=f\left(-a\right)\forall a\)
b)
\(f\left(a-1\right)=4\)
\(\Rightarrow\left(a-1\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}a-1=2\\a-1=-2\end{matrix}\right.\)
TH1:
a-1 = 2
=> a = 3
ThH2:
a-1 = -2
=> a = -1
Bài 2:
a) Hàm số đồng biến khi :
\(m+2>0\)
\(\Rightarrow m>-2\)
b) Hàm số có GTLN là 0
=> \(\left(m+2\right)x^2\le0\)
Lại có \(x^2\ge0\)
=> m +2 \(\le0\)
=> m \(\le-2\)
c) Hàm số có GTNN là 0
=> \(\left(m+2\right)x^2\ge0\)
Vì \(x^2\ge0\)
=> m+2 \(\ge0\)
=> \(m\ge-2\)
b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Theo đề bài ta có:
\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)
Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)
\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)
Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM
Thay x = a 2 vào f x = = x + 1 2 x + 3 ta được
f ( a 2 ) = a 2 + 1 2 a 2 + 3 = a + 1 2 a + 3 = − a + 1 − 2 a + 3 = 1 − a 3 − 2 a ( v ì a < 0 | a | = − a )
Đáp án cần chọn là: D