K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

Đáp án B.

Phương pháp : Chuyển vế, lấy nguyên hàm hai vế.

Cách giải :

 

 

23 tháng 5 2018

18 tháng 6 2017

Đáp án B.

Cho m=1 ta có

f ( n + 1 ) = f ( n ) + f ( 1 ) + n ⇔ f ( n + 1 ) = f ( n ) + n + 1.  

Khi đó 

f ( 2 ) + f ( 3 ) + ... + f ( k ) = f ( 1 ) + 2 + f ( 2 ) + 3 + ... + f ( k − 1 ) + k + 1

  ⇔ f ( 2 ) + f ( 3 ) + ... + f ( k − 1 ) + f ( k ) = f ( 1 ) + f ( 2 ) + ... + f ( k − 1 ) + ( 1 + 2 + ... + k )  

⇔ f ( k ) = f ( 1 ) + ( 1 + 2 + ... + k ) = 1 + k ( k + 1 ) 2 .

 

Vậy hàm cần tìm là 

f ( x ) = 1 + x ( x + 1 ) 2 ⇒ f ( 96 ) = 1 + 96.97 2 = 4657 f ( 69 ) = 1 + 69.70 2 = 2416

Vậy

  T = log 4657 − 2416 − 241 2 = log 1000 = 3.

AH
Akai Haruma
Giáo viên
8 tháng 1 2017

Lời giải:

\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)

Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)

Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)

Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)

31 tháng 8 2019

8 tháng 12 2019

Chọn A

14 tháng 1 2017

21 tháng 11 2019

Đáp án D

2 tháng 6 2017

f ( 1 - x ) + x 2 f ' ' ( x ) = 2 x 1  

Thay x=0 vào (1) ta được f(1)=0 

Đạo hàm hai vế của (1) ta có - f ' ( 1 - x ) + 2 x f ' ' ( x ) + x 2 f ' ' ' ( x ) = 2 2  

Thay x=0 vào (2) ta được f'(1)=2

Mặt khác, lấy tích phân hai vế cận từ 0 đến 1 của (1) ta có:

∫ 0 1 f ( 1 - x ) d x + ∫ 0 1 x 2 f ' ' ( x ) d x = ∫ 0 1 2 x d x

⇔ - ∫ 0 1 f ( 1 - x ) d ( 1 - x ) + f ' ( 1 ) - 2 ∫ 0 1 x f ' ( x ) d x = 1 ⇔ ∫ 0 1 f ( x ) d x - 2 ∫ 0 1 x f ' ( x ) d x = 3

Đặt ∫ 1 f ( x ) d x = I 1 . Vì

∫ 0 1 x f ' ( x ) d x = f ( 1 ) - ∫ 0 1 f ( x ) d x = - ∫ 0 1 f ( x ) d x

nên ta có hệ: I 1 - 2 I = 3 I = - I 1 ⇔ I 1 = 1 I = - 1  

Vậy I=-1

Chọn đáp án B.