Cho hai vectơ a → ;   b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng? a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC 3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)\(\overrightarrow{BN}\) ta được

a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

a) 2a b) 3a c) \(\frac{a}{2}\) d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)

0

a: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{b}{7}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{a-b-c}{21-14-10}=\dfrac{-9}{-3}=3\)

Do đó: a=63; b=42; c=30

b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\)

Do đó: a=10; b=15; c=20

d: Đặt a/1=b/3=c/5=k

=>a=k; b=3k; c=5k

Ta có: abc=120

\(\Leftrightarrow15k^3=120\)

=>k=2

=>a=2; b=6; c=10

19 tháng 5 2017

\(\left|\overrightarrow{a}+\overrightarrow{b}\right|^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}.\overrightarrow{b}\)
\(=5^2+12^2+2.5.12.cos\left(\overrightarrow{a},\overrightarrow{b}\right)\)
\(=169+120cos\left(\overrightarrow{a},\overrightarrow{b}\right)=13^2\)
Suy ra: \(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=0\).
\(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left(\overrightarrow{a}\right)^2+\overrightarrow{a}.\overrightarrow{b}=5^2+5.12.0=25\).
Mặt khác \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|.\left|\overrightarrow{a}+\overrightarrow{b}\right|.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\)
\(=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
Vì vậy \(25=5.13.cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)\).
\(cos\left(\overrightarrow{a},\overrightarrow{a}+\overrightarrow{b}\right)=\dfrac{5}{13}\).
Vậy góc giữa hai véc tơ \(\overrightarrow{a}\)\(\overrightarrow{a}+\overrightarrow{b}\)\(\alpha\) sao cho \(cos\alpha=\dfrac{5}{13}\).

NV
18 tháng 3 2019

\(\overrightarrow{u}\overrightarrow{v}=0\Rightarrow\left(\overrightarrow{a}+3\overrightarrow{b}\right)\left(7\overrightarrow{a}-5\overrightarrow{b}\right)=7a^2+16\overrightarrow{a}\overrightarrow{b}-15b^2=0\left(1\right)\)

\(\overrightarrow{x}\overrightarrow{y}=0\Rightarrow\left(\overrightarrow{a}-4\overrightarrow{b}\right)\left(7\overrightarrow{a}-2\overrightarrow{b}\right)=7a^2-30\overrightarrow{a}\overrightarrow{b}+8b^2=0\left(2\right)\)

(1) và (2): \(\left\{{}\begin{matrix}7a^2+16\overrightarrow{a}\overrightarrow{b}-15b^2=0\\7a^2-30\overrightarrow{a}\overrightarrow{b}+8b^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{a}\overrightarrow{b}=\frac{b^2}{2}\\a^2=b^2\Rightarrow\left|a\right|=\left|b\right|\end{matrix}\right.\)

\(\Rightarrow cos\left(\overrightarrow{a},\overrightarrow{b}\right)=\frac{\overrightarrow{a}\overrightarrow{b}}{\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|}=\frac{\frac{b^2}{2}}{\left|a\right|.\left|b\right|}=\frac{\frac{b^2}{2}}{b^2}=\frac{1}{2}\)

\(\Rightarrow\left(\overrightarrow{a};\overrightarrow{b}\right)=60^0\)

18 tháng 3 2019

Cảm ơn bạn rất nhiều !

Bài 1: Cho hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\)có \(\left|\overrightarrow{a}\right|\)= 5 , \(\left|\overrightarrow{b}\right|\)= 12 và \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\) = 13. Tính tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) và suy ra góc giữa hai vectơ \(\overrightarrow{a}\) và \((\overrightarrow{a}+\overrightarrow{b})\). Bài 2: Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) thỏa mãn...
Đọc tiếp

Bài 1: Cho hai vectơ \(\overrightarrow{a}\), \(\overrightarrow{b}\)\(\left|\overrightarrow{a}\right|\)= 5 , \(\left|\overrightarrow{b}\right|\)= 12 và \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\) = 13. Tính tích vô hướng \(\overrightarrow{a}.(\overrightarrow{a}+\overrightarrow{b})\) và suy ra góc giữa hai vectơ \(\overrightarrow{a}\)\((\overrightarrow{a}+\overrightarrow{b})\).

Bài 2: Cho hai vectơ \(\overrightarrow{a}\)\(\overrightarrow{b}\) thỏa mãn \(\left|\overrightarrow{a}\right|\) = 3 , \(\left|\overrightarrow{b}\right|\) = 5 và \((\overrightarrow{a},\overrightarrow{b})\) = 120o

Với giá trị nào của m thì hai vectơ \(\overrightarrow{a}+m\overrightarrow{b}\)\(\overrightarrow{a}-m\overrightarrow{b}\)vuông góc nhau.

Bài 3: Cho tam giác ABC có AB = 2a , AC = a và A = 120o

a) Tính BC và \(\overrightarrow{BA.}\overrightarrow{BC}\)

b) Gọi N là điểm trên cạnh BC sao cho BN = x. Tính\(\overrightarrow{AN}\) theo \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) ,x

c) Tìm x để AN\(\perp\) BM

0
1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?a)  BM=\(\frac{2}{5}.BC\)           b)    CM=\(\frac{3}{5}.BC\)            c)    M nằm ngoài cạnh BC        d)   M nằm trên cạnh BC3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a)  BM=\(\frac{2}{5}.BC\)           b)    CM=\(\frac{3}{5}.BC\)            c)    M nằm ngoài cạnh BC        d)   M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta được 

a)  \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\)                                     b)   \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\)     

c)  \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}-\frac{2}{5}.\overrightarrow{BN}\)                                    d)   \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác  ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a)  \(\frac{a\sqrt{3}}{2}\)    b)    \(\frac{a}{2}\)       c) a         d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a)  \(a\sqrt{3}\)    b)    0           c) a                 d)   \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) là

a)  2a         b) 3a          c) \(\frac{a}{2}\)           d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\)      b)  cùng hướng với \(\overrightarrow{AD}\)      c) ngược hướng với \(\overrightarrow{AB}\)   d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\)     b)    \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\)    c)  \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\)  d)  \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a)  \(\overrightarrow{v}=\overrightarrow{AD}\)     b)  \(\overrightarrow{v}=\overrightarrow{AB}\)   c) \(\overrightarrow{v}=2\overrightarrow{AB}\)    d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b                    b) a-b                  c)b-a                     d) \(\left|a-b\right|\)

 

0
30 tháng 3 2017

Giải bài 3 trang 62 sgk Hình học 10 | Để học tốt Toán 10

17 tháng 5 2017

a) \(\overrightarrow{a}=2\overrightarrow{u}+3\overrightarrow{v}=2\left(3;-4\right)+3\left(2;5\right)=\left(6;-8\right)+\left(6;15\right)\)\(=\left(12;7\right)\).
b) \(\overrightarrow{b}=\overrightarrow{u}-\overrightarrow{v}=\left(3;-4\right)-\left(2;5\right)=\left(1;-9\right)\).
c) Hai véc tơ \(\overrightarrow{c}=\left(m;10\right)\)\(\overrightarrow{v}\) cùng phương khi và chỉ khi:
\(\dfrac{m}{2}=\dfrac{10}{5}=2\Rightarrow m=4\).

31 tháng 3 2017

Giải bài 2 trang 27 sgk Hình học 10 | Để học tốt Toán 10