\(A=\left\{x\in R|\left|x-2\right|=\left|x^2-3x+1\right|\right\}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2020

\(\left|x-2\right|=\left|x^2-3x+1\right|\Leftrightarrow\left(x^2-3x+1\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow\left(x^2-3x+1\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=3\\x=1\pm\sqrt{2}\end{matrix}\right.\)

Tập A có 4 phần tử trong khi tập B chỉ có 2 phần tử nên 2 tập này ko thể bằng nhau với mọi a;b

Đề sai, hoặc bạn ghi sai đề

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 1:

\(|x-1|>3\Leftrightarrow \left[\begin{matrix} x-1>3\\ x-1< -3\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x>4\\ x< -2\end{matrix}\right.\)

\(\Rightarrow A=\left\{x\in\mathbb{R}|x\in (4;+\infty) \text{hoặc }x\in (-\infty;-2)\right\}\)

\(|x+2|< 5\Leftrightarrow -5< x+2< 5\Leftrightarrow -7< x< 3\Leftrightarrow x\in (-7;3)\)

\(\Rightarrow B=\left\{x\in\mathbb{R}|x\in (-7;3)\right\}\)

Do đó: \(A\cap B=\left\{\in\mathbb{R}|x\in (-7;-2)\right\}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Bài 2:

\(2< |x|\Leftrightarrow \left[\begin{matrix} x>2\\ x< -2\end{matrix}\right.(1)\)

\(|x|< 3\Leftrightarrow -3< x< 3(2)\)

Từ (1);(2) suy ra để $2< |x|< 3$ thì: \(\left[\begin{matrix} 2< x< 3\\ -3< x< -2\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x\in (2;3)\\ x\in (-3;-2)\end{matrix}\right.\)

Biểu diễn A qua hợp các khoảng:

\(A=(-3;-2)\cup (2;3)\)

a: A=(-7/4; -1/2]

\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)

\(C=\left(\dfrac{2}{3};+\infty\right)\)

b: \(\left(A\cap B\right)\cap C=\varnothing\)

\(\left(A\cup C\right)\cap\left(B\A\right)\)

\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)

\(=\left(4;\dfrac{9}{2}\right)\)

19 tháng 8 2017

\(A\cap B=\left\{1\right\}\)

\(A\cup B=\left\{-2;-1;0;1;2\right\}\)

NV
17 tháng 9 2020

Nếu đề đúng thì cả 4 đáp án đều sai nên khẳng định là đề sai

Bạn nhìn lại tập hợp A, khả năng là sai đề tại đấy :)

Tập hợp A là tập nào vậy bạn?

A=(-2;2)

B=[-3;2)

A giao B=(-2;2)

A\B=\(\varnothing\)

B\A=[-3;-2]

\(C_R\left(A\cap B\right)=R\backslash\left(-2;2\right)=(-\infty;-2]\cup[2;+\infty)\)

I) trắc nghiệm câu 1 mệnh đề nào sau đây là mệnh đề sai? A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\) câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu: A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác II)tự luận câu 1 a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng...
Đọc tiếp

I) trắc nghiệm

câu 1 mệnh đề nào sau đây là mệnh đề sai?

A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\)

câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu:

A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác

II)tự luận

câu 1

a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng "điều kiện cần"

b) cho mệnh đề P:"\(\exists x\in Q:2x^2-5x+2=0\).Xét tính đúng sai của mệnh đề P và nêu mệnh đề phủ định của mệnh đề P

câu 2 cho hai tập hợp sau> Hãy liên kế các phần tử trong tập A và B

\(A=\left\{x\in N:\left|x\right|< 4\right\}\)

\(B=\left\{x\in Q:\left(4x^2-x\right)\left(x^2+3x-4\right)=0\right\}\)

câu 3 cho hai tập hợp \(A=\left\{x\in N:\left(x^2+2x\right)\left(x^2+x-2\right)\right\}=0\)và tập hợp \(B=\left\{-1;0;1\right\}\). Tìm các tập hợp \(A\cup B;A\cap B;\) A\B;B\A

câu 4 cho hai tập hợp \(A=\left\{x\in R/-2< x< 3\right\}\)\(B=(-\infty;2]\). Tìm tập hợp \(A\cup B;A\cap B;\)A\B;B\A và biểu diễn trên trục số

0
30 tháng 8 2017

Akai Haruma

23 tháng 8 2019

a/ \(\left\{a\right\};\left\{b\right\};\left\{a;b\right\};\varnothing\)

b/ \(\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\};\varnothing\)

c/ \(\left\{0\right\};\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{0;1\right\};\left\{0;2\right\};\left\{0;3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{0;1;2\right\};\left\{1;2;3\right\};\left\{0;2;3\right\};\left\{0;1;3\right\};\left\{0;1;2;3\right\};\varnothing\)

d/ \(\left\{1\right\};\left\{-2\right\};\left\{1;-2\right\};\varnothing\)