\(A=\left\{1;2;3;4;5;6;7;8\right\}\) và \(B=\left(-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 8 2020

Chắc là \(B\backslash A\) chứ nhỉ?

\(B\backslash A=\left(-\infty;-1\right)\cup\left(2;3\right)\cup\left(3;4\right)\cup\left(4;5\right)\cup\left(5;6\right)\cup\left(6;7\right)\cup\left(7;8\right)\cup\left(8;+\infty\right)\)

27 tháng 9 2019

B

NV
15 tháng 5 2020

\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)

NV
25 tháng 9 2019

Bạn viết nhầm tập hợp A

\(A\cap B\ne\varnothing\Leftrightarrow m+3>2m-1\)

\(\Rightarrow m< 4\)

NV
15 tháng 5 2020

ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)

\(\Leftrightarrow4x-3>0\)

\(\Rightarrow x>\frac{3}{4}\)

\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)

Chẳng đáp án nào đúng cả :)

16 tháng 5 2017

a) (\(-2;3\)]

b) \(\left(-15;14\right)\)

c) \(\left(0;5\right)\)

d) (\(-\infty;4\)] \(\cup\) [\(1;+\infty\))

30 tháng 7 2018

a) (−∞;3]∩(−2;+∞)=(−2;3](−∞;3]∩(−2;+∞)=(−2;3]

b) (0;12)∩[5;+∞)=(0;5)(0;12)∩[5;+∞)=(0;5)

c) (−15,7)∪(−2;14)=(−2;1)∪(3;7)(−15,7)∪(−2;14)=(−2;1)∪(3;7)

d) R∖(−1;1)=(−∞;−1]∪[1;+∞)

2 tháng 4 2017

a) (0, 7)

b) (2, 5)

c) [3, +∞)


26 tháng 7 2017

a)(0,7).

b)(2,5).

c)(3,\(+\infty\)).

7 tháng 11 2019

a/ ĐKXĐ: \(x\ne-1\)

Giả sử x1> x2

\(\Rightarrow f\left(x_1\right)=\frac{x_1}{x_1+1};f\left(x_2\right)=\frac{x_2}{x_2+1}\)

\(f\left(x_1\right)-f\left(x_2\right)=\frac{x_1}{x_1+1}-\frac{x_2}{x_2+1}\)

\(=\frac{x_1x_2+x_1-x_1x_2-x_2}{\left(x_1+1\right)\left(x_2+2\right)}=\frac{x_1-x_2}{\left(x_1+1\right)\left(x_2+1\right)}\)

Xét trên khoảng \(\left(-\infty;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+1>0\\x_2+1>0\end{matrix}\right.\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(x_1>x_2\Rightarrow x_1-x_2>0\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;1\right)\)

làm tương tự trên khoảng \(\left(-1;+\infty\right)\)

b/ \(ĐKXĐ:x\ne2\)

Giả sử x1> x2

\(f\left(x_1\right)-f\left(x_2\right)=\frac{2x_1+3}{2-x_1}-\frac{2x_2+3}{2-x_2}\)

\(=\frac{4x_1-2x_1x_2+6-3x_2-4x_2+2x_1x_2-6+3x_1}{\left(2-x_1\right)\left(2-x_2\right)}\)

\(=\frac{7x_1-7x_2}{\left(2-x_1\right)\left(2-x_2\right)}\)

Xét trên khoảng \(\left(-\infty;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2-x_1>0\\2-x_2>0\end{matrix}\right.\Rightarrow\left(2-x_1\right)\left(2-x_2\right)>0\)

\(x_1>x_2\Rightarrow7x_1-7x_2>0\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;2\right)\)

làm tương tự trên \(\left(2;+\infty\right)\)

c/ Có \(-\frac{b}{2a}=-1\)

Mà a=1>0 => hàm số đồng biến trên \(\left(-1;+\infty\right)\) , nghịch biến trên \(\left(-\infty;-1\right)\)

d/ \(-\frac{b}{2a}=1\)

Mà a= -1>0 => hàm số đồng biến trên \(\left(-\infty;1\right)\) , nghịch biến trên \(\left(1;+\infty\right)\)

NV
8 tháng 9 2020

\(A\cup B=[-2;+\infty)\)

\(\Rightarrow C_R\left(A\cup B\right)=\left(-\infty;-2\right)\)