Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A giao B bằng rỗng thì 3a+1<0 và 2a>5
=>a<-1/3 hoặc a>5/2
=>Để A giao B khác rỗng thì a>=-1/3 và a<=5/2
=>-1/3<=a<=5/2
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+2\le0\\m\ge5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-2\\m\ge5\end{matrix}\right.\)
\(\Rightarrow A\cap B\ne\varnothing\Leftrightarrow-2< m< 5\)
Có \(4-\left(-1\right)+1=6\) số nguyên m
em thưa thầy em ko hiểu vì sao từ -2<m<5 lại có 4-(-1)+1=6 ạ
a: \(\left\{{}\begin{matrix}c=5\\\dfrac{-b}{2a}=3\\\dfrac{-\left(b^2-20a\right)}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\b=-6a\\-\left(36a^2-20a\right)=16a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=5\\b=-6a\\36a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{9}\\b=-6a=\dfrac{-2}{3}\\c=5\end{matrix}\right.\)
Bàu này quá dễ cái này lớp 6 còn còn có trong chương trình :)
Cho hai tập khác rỗng : A = (m – 1; 4], B = (-2; 2m + 2), với m ∈ Rℝ. Giá trị m để A ∩ B ⊂ (-1; 3) là:
Điều kiện để tồn tại tập hợp A, B là
{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12
Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.
Cách này là tôi tự làm trong 1 lần ở Viet Jack kiểu tham khảo chứ ko coppy mạng :)
>3.....@Chi
Điều kiện để tồn tại tập hợp A, B là
\(\hept{\begin{cases}m-1>4\\-2< 2m+2\end{cases}}\Rightarrow\hept{\begin{cases}m< 5\\m>-2\end{cases}}\Leftrightarrow-2< m< 5\)
A ∩ B ⊂ (-1; 3) \(\Leftrightarrow\hept{\begin{cases}m-1\ge-1\\2m+2\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ge0\\m\le\frac{1}{2}\end{cases}}\Leftrightarrow0\le m\le\frac{1}{2}\)
{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12
Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.
Để tập hợp A và B có nghĩa thì:
\(m-4\le1\Leftrightarrow m\le5\) (1)
\(m>-3\) (2)
Từ (1) và (2) \(\Rightarrow-3< m\le5\)
Mà: \(A\cup B=B\)
\(\Rightarrow A\subset B\)
\(\Rightarrow\left\{{}\begin{matrix}m-4>-3\\m\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-3+4\\m\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge1\end{matrix}\right.\Leftrightarrow m>1\)
Mà: \(-3< m\le5\)
\(\Rightarrow1< m\le5\)
\(\Rightarrow m=\left\{2;3;4;5\right\}\)
Tổng là: có 4 giá trị m nguyên thỏa mãn