\(a=2^{2n+1}+2^{n+1}+1\)

\(b=2^{2n+1}-2^{n+1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

đăng từ từ từng câu 1 ik bn!

3 tháng 7 2017

2)Tích 2 số tự nhiên liên tiếp chia hết cho 2 hay n(n+1) chia hết cho 2.

Bây h ta cần CM 1 trong 3 số chia hết cho 3:

_n=3k(k là số tn) thì n chia hết cho 3(đpcm)

_n=3k+1 thì 2n+1=2(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(đpcm)

_n=3k+2 thì n+1=3k+2+!=3k+3(đpcm)

Vậy n(n+1)(2n+1) chia hết cho 6

5 tháng 11 2016

a ) \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}=\frac{1}{4}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)=\frac{1}{4}\left(1+\frac{1}{1}-\frac{1}{n}\right)< \frac{1}{2}\)

b )

\(B=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{3^2-1}+\frac{1}{5^2-1}+...+\frac{1}{\left(2n+1\right)^2-1}\)

\(=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2n\left(2n+2\right)}\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-...+\frac{1}{2n}-\frac{1}{2n+2}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n+2}\right)< \frac{1}{4}\).

2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)

\(=9^n\cdot80+3^n\cdot10\)

\(=10\left(9^n\cdot8+3^n\right)⋮10\)

6 tháng 8 2016

Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)

Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)

và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)

=>n - 2009 = 1 =>n = 2010

Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)

Vậy giá trị lớn nhất của A là 2011 khi n=2010

6 tháng 8 2016

Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)

Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)

Ta có bảng sau:

  n + 3  9 -9  3  -3  1  -1
     n  6 -12  0  -6  -2  -4