\(\left(2x+1\right)^2+\left|y+1,2\right|=0\)
Tính giá...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

Ta thấy: \(\begin{cases}\left(2x+1\right)^2\ge0\\\left|y+1,2\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^2+\left|y+1,2\right|\ge0\)

Để \(\left(2x+1\right)^2+\left|y+1,2\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^2=0\\\left|y+1,2\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y+1,2=0\end{cases}\)

\(\Rightarrow\begin{cases}2x=-1\\y=-1,2\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=-1,2\end{cases}\)

\(\Rightarrow x+y=-\frac{1}{2}+\left(-1,2\right)=-1,7\)

 

20 tháng 11 2016

bài tập violympic bn nên tự lm

28 tháng 11 2016

Câu 1: Giá trị của x thỏa mãn

|x+2,37|+|y5,3|=0

Để GTBT bằng 0 thì |x+2,37| = 0 và |y5,3| = 0

-> x = -2,37 , y = 5,3

Vậy x = -2,37

Câu 2: Giá trị của y thỏa mãn

−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0

-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)

-> |y−1,37| = 0 -> y = 1,37

Vậy y = 1,37

 

4 tháng 10 2016

\(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow\frac{2014.2015.x}{2013.2014.2015}=\)\(\frac{y.2013.2015}{2013.2014.2015}=\frac{2013.2014.z}{2013.2014.2015}\)

\(\Rightarrow2014.2015.x=y.2013.2015=z.2013.2014\)

\(\Rightarrow x=2013;y=2014;z=2015\)

Đến đây bạn tự thay vào rồi tính nhé!

22 tháng 1 2017

Vì \(\hept{\begin{cases}\left|x-2\right|\ge0\\\sqrt{\left(y+1\right)^{2015}}\ge0\end{cases}\Rightarrow\left|x-2\right|+\sqrt{\left(y+1\right)^{2015}}\ge}0\)

Dấu "=" của đẳng thức xảy ra khi \(\left|x-2\right|=\sqrt{\left(y+1\right)^{2015}}=0\)

\(\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

\(\sqrt{\left(y+1\right)^{2015}}=0\Leftrightarrow\left(y+1\right)^{2015}=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Thay x=2 và y=-1 vào biểu thức P ta có:

\(P=2x^3+15y^3+2016=2.2^3+15.\left(-1\right)^3+2016=16+\left(-15\right)+2016=2017\)

Vậy ................

22 tháng 1 2017

\(P=2.2^3-15+2016=2017\)

8 tháng 2 2016

theo t/c dãy tỉ số=nhau:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

=>x=y=z

\(1+\frac{x}{y}=\frac{x+y}{y}=\frac{y+y}{y}=\frac{2y}{y}=2\)

\(1+\frac{y}{z}=\frac{y+z}{z}=\frac{z+z}{z}=\frac{2z}{z}=2\)

\(1+\frac{z}{x}=\frac{z+x}{x}=\frac{x+x}{x}=\frac{2x}{x}=2\)

=>B=2.2.2=8

8 tháng 2 2016

\(\frac{3x+3y+3z}{x+y+z}\)=\(\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)

\(\Leftrightarrow B=\left(1+\frac{\frac{1}{2}}{\frac{1}{2}}\right)\left(1+\frac{\frac{1}{2}}{\frac{-1}{2}}\right)\left(1+\frac{\frac{-1}{2}}{\frac{1}{2}}\right)\)=0

10 tháng 12 2015

cộng thêm 2 mỗi bên : \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}\) => x =y =z  ( vì tử = nhau)

=> B = 2.2.2 =8

24 tháng 12 2018

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

24 tháng 12 2018

cảm ơn nhiều

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)