\(\frac{y}{1+x}+\frac{x}{1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

Ta có:

\(A=\frac{y}{1+x}+\frac{x}{1+y}=\frac{y^2}{y+xy}+\frac{x^2}{x+xy}\)

Áp dụng BĐT Bunyakovsky dạng phân thức ta có:

\(A\ge\frac{\left(y+x\right)^2}{y+xy+x+xy}=\frac{1}{1+2xy}\ge\frac{1}{1+\frac{\left(x+y\right)^2}{2}}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

14 tháng 10 2020

\(A=\frac{y+y^2+x+x^2}{1+x+y+xy}=\frac{1+\left(x^2+y^2\right)}{2+xy}\ge\frac{1+\frac{\left(x+y\right)^2}{2}}{2+\frac{\left(x+y\right)^2}{4}}=\frac{1+\frac{1}{2}}{2+\frac{1}{4}}=\frac{2}{3}\)

Dấu "=" xảy ra <=> x = y = 1/2

19 tháng 7 2020

\(T=21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)

\(=3\left(\frac{1}{x}+\frac{x}{9}\right)+21\left(\frac{1}{y}+\frac{y}{9}\right)+\frac{62x}{9}+\frac{2y}{3}\)

\(\ge6\sqrt{\frac{1}{x}\cdot\frac{x}{9}}+42\sqrt{\frac{1}{y}\cdot\frac{y}{9}}+\frac{62\cdot3}{9}+\frac{2\cdot3}{9}\)

\(=\frac{112}{3}\)

Đẳng thức xảy ra tại x=3;y=3

18 tháng 1 2017

Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).

Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)

NV
5 tháng 4 2022

Đặt \(\left\{{}\begin{matrix}x+1=a>0\\y+1=b>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)-2\left(b-1\right)\ge1\)

\(\Rightarrow a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(A=\dfrac{\left(x+1\right)^2+\left(y+1\right)^2}{\left(x+1\right)\left(y+1\right)}=\dfrac{a^2+b^2}{ab}=\dfrac{a}{b}+\dfrac{b}{a}\)

\(A=\left(\dfrac{a}{4b}+\dfrac{b}{a}\right)+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\) hay \(x+1=2\left(y+1\right)\)

6 tháng 4 2021

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : \(A=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+1=2x^2-1+2x-x^2+x+\frac{1}{x}+1\)

\(=x^2+3x+\frac{1}{x}=x^2-x+\frac{1}{4}+4x+\frac{1}{x}+\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+4x+\frac{1}{x}+\frac{1}{4}\)

Mà \(4x+\frac{1}{x}\ge2\sqrt{4x.\frac{1}{x}}=2.2=4\). Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy min\(A=4+\frac{1}{4}=\frac{17}{4}\)<=> x = y = 1/2

19 tháng 4 2021

Cách giải như sau

x + y = 1 => y = 1 - x mà x,y dương => 0 < x < 1

Suy ra : A=2x2−(1−x)2+x+1x +1=2x2−1+2x−x2+x+1x +1

=x2+3x+1x =x2−x+14 +4x+1x +14 

=(x−12 )2+4x+1x +14 

Mà 4x+1x ≥2√4x.1x =2.2=4. Dấu "=" xảy ra <=> 4x = 1/x <=> x = 1/2

Với x = 1/2 thì ( x - 1/2 )2 cũng đạt GTNN là 0 => y = 1 - a = 1/2

Vậy minA=4+14 =174 <=> x = y = 1/2

          HOK TỐT

2 tháng 5 2020

Ta có :

\(P=\frac{\left(x+y\right)^3}{x^3+y^3}+\frac{\left(x+y\right)^3}{xy}=\frac{x^3+y^3+3xy\left(x+y\right)}{x^3+y^3}+\frac{x^3+y^3+3xy\left(x+y\right)}{xy}\)

\(=1+\frac{3xy}{x^3+y^3}+3+\frac{x^3+y^3}{xy}=4+\left(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\right)\ge4+2\sqrt{3}\)

Vậy GTNN của P là \(4+2\sqrt{3}\) khi = \(\frac{3xy}{x^3+y^3}=\frac{x^3+y^3}{xy}\)và x + y = 1

P/s : tự giải dấu "=" nhé. mình lười ghi

3 tháng 5 2020

Ta có \(P=\frac{1}{\left(x+y\right)^3-3xy\left(x+y\right)}+\frac{1}{xy}=\frac{1}{1-3xy}+\frac{1}{xy}=\frac{1-2xy}{xy\left(1-3xy\right)}\)

Theo Cosi \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Gọi \(P_0\)là một giá trị của P khi đó \(\exists x,y\)để \(P_0=\frac{1-2xy}{xy\left(1-3xy\right)}\Leftrightarrow3P_0\left(xy\right)^2-\left(2+P_0\right)xy+1=0\left(1\right)\)

Để tồn tại x,y thì (1) phải có nghiệm xy \(\Leftrightarrow\Delta=P_0^2-8P_0+4\ge0\Leftrightarrow\orbr{\begin{cases}P_0\ge4+2\sqrt{3}\\P_0\le4-2\sqrt{3}\end{cases}}\)

Để ý rằng với giả thiết bài toán thì B>0. Do đó ta có \(P_0\ge4+2\sqrt{3}\)

Với \(P_0=4+2\sqrt{3}\Rightarrow xy=\frac{2+P_0}{6P_0}=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\Rightarrow x\left(1-x\right)=\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}\)

\(\Leftrightarrow x^2-x+\frac{3+\sqrt{3}}{6\left(2+\sqrt{3}\right)}=0\Leftrightarrow x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2},x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\)

Vậy \(min_P=4+2\sqrt{3}\)đạt được khi \(\orbr{\begin{cases}x=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\\x=\frac{1-\sqrt{\frac{2\sqrt{3}}{3}-1}}{2};y=\frac{1+\sqrt{\frac{2\sqrt{3}}{3}-1}}{2}\end{cases}}\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?