\(x^2+y^2=1\). tìm giá trị nhỏ nhất và giá trị l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Ta sẽ cm bổ đề sau: 

Bổ đề\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (Bunyakovski 2 số)

C/m : Ta thấy: \(\left(ad-bc\right)^2\ge0\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

      \(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

       \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{c}=\frac{b}{d}\)

Quay lại bài toán, áp dụng bđt bunyakovski ta có :

     \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow2\ge\left(x+y\right)^2\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\hept{\begin{cases}min\left(x+y\right)=-\sqrt{2}\Leftrightarrow x=y=\frac{-1}{\sqrt{2}}\\max\left(x+y\right)=\sqrt{2}\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\end{cases}}\)

1 tháng 5 2019

Ta có : (x+y)2+7x+7y+y2+6=0

( x2 + y2 + \(\frac{49}{4}\)+ 7x + 7y + 2xy ) + y2 - \(\frac{25}{4}\)= 0

( x + y + \(\frac{7}{2}\))2 = \(\frac{25}{4}\)- y2 \(\le\frac{25}{4}\)

\(\Rightarrow\frac{-5}{4}\le x+y+\frac{7}{2}\le\frac{5}{4}\)

\(\Rightarrow\frac{-15}{4}\le x+y+1\le\frac{-5}{4}\)

\(\Rightarrow\)...... 

1 tháng 5 2019

lon so roi,

thay -5/4 thành -5/2 ; 5/4 thành 5/2

-15/4 thành -5 ; 5/2 thành 0 

4 tháng 2 2017

\(x^2+y^2=6x-5\)

\(\left(x-3\right)^2+y^2=2^2\Rightarrow1\le x\le5\)

\(1\le x^2+y^2\le25\)

6 tháng 1 2021

\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)

6 tháng 1 2021

dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

27 tháng 12 2018

Ta có: 3x + y = 1 => y = 1 - 3x

=> M = 3x2 + y2 = 3x2 + (1-3x)2 

         = 3x2 + 1 - 6x + 9x2 

         = 12x2 - 6x + 1

         = 12.(x2 -\(\frac{1}{2}x\) + \(\frac{1}{12}\))

         = 12.((x2 - 2. \(\frac{1}{4}x\)\(\frac{1}{16}\)) - \(\frac{1}{16}\)\(\frac{1}{12}\))

         = 12.((x-\(\frac{1}{4}\)) + \(\frac{1}{48}\))

           = 12. (x-\(\frac{1}{4}\))2 + \(\frac{1}{4}\)     

=> M     \(\ge\)\(\frac{1}{4}\)

Dấu ''='' xảy ra khi: (x - \(\frac{1}{4}\))2 = 0 => x = \(\frac{1}{4}\)

Vậy Mmin= \(\frac{1}{4}\)khi x= \(\frac{1}{4}\)

23 tháng 1 2017

3x+y=1=>y=1-3x,thay vào A ta  được A=3x2+(1-3x)2=3x2+1-6x+9x2=12x2-6x+1=12(x2-1/2x+1/12)=12(x-1/4)2+1/4 >= 1/4 với mọi x

 Dấu "=" xảy ra khi x=y=1/4 

23 tháng 9 2019

\(P=\left(x+y\right)^3-3xy\left(x+y\right)+2x^2y^2\)

\(=2x^2y^2-3xy+1=2t^2-3t+\frac{5}{8}+\frac{3}{8}\) (đặt t = xy \(\Rightarrow t\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\))

\(=\frac{1}{8}\left(4t-1\right)\left(4t-5\right)+\frac{3}{8}\ge\frac{3}{8}\)

Do đó \(P\ge\frac{3}{8}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\t=\frac{1}{4}\\x=y\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

True?

1 tháng 4 2020

Em không hiểu ctv giải dòng suy ra T ạ

19 tháng 9 2019

Từ giả thiết ta có: \(\left(x-1\right)\left(x-2\right)\le0\Rightarrow x^2\le3x-2\). Tương tự \(y^2\le3y-2\)

Từ đây ta có: \(A\ge\frac{x+2y}{3\left(x+y+1\right)}+\frac{y+2x}{3\left(x+y+1\right)}+\frac{1}{4\left(x+y-1\right)}\)

\(=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\). Đặt \(t=x+y\Rightarrow2\le t\le4\)

Ta sẽ tìm min của \(A=\frac{t}{t+1}+\frac{1}{4\left(t-1\right)}\) với \(2\le t\le4\). Đến đây vẫn chưa mừng được vì ko thể dùng miền giá trị!Ta sẽ chứng minh A \(\le\frac{7}{8}\). Thật vậy: \(A-\frac{7}{8}=\frac{t}{t+1}-\frac{3}{4}+\frac{1}{4\left(t-1\right)}-\frac{1}{8}\)

\(=\frac{t-3}{4\left(t+1\right)}-\frac{t-3}{8\left(t-1\right)}=\frac{4\left(t-3\right)^2}{32\left(t+1\right)\left(t-1\right)}\ge0\). Do đó...

Đẳng thức xảy ra khi (x;y) = (2;1) và các hoán vị của nó!

P/s: Nhớ check xem em có quy đồng sai chỗ nào không:v

19 tháng 9 2019

Ấy nhầm:v "Ta sẽ chứng minh \(A\ge\frac{7}{8}\)" Thế này mới đúng nha, đánh lanh tay quá nên nhầm:)))