Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=2x^2-1/3y
thay x=2 và y=9 vào biểu thức:
Ta có :2.2^2-1/3.9
=2.4-3
= 6-3=3
Vậy tại x =2 và y=9 giá trị của biểu thức bằng 3
x+3y\(\ge\)1=>x\(\ge\)1-3y
Suy ra: A\(\ge\)(1-3y)2+y2=1-6y+9y2+y2=10y2-6y+1=\(10.\left(y^2-\frac{3}{5}y+\frac{1}{10}\right)\)
\(=10.\left(y^2-2.y.\frac{3}{10}+\frac{9}{100}+\frac{1}{100}\right)=10.\left(x-\frac{3}{10}\right)^2+\frac{1}{10}\ge\frac{1}{10}=0,1\)
Vậy GTNN của A là 0,1 tại x=0,3
Đáp án C
Phương pháp:
- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.
Cách giải:
<=>
(2)
Đặt
=> f(t) đồng biến trên (0;+∞)
<=>
<=>
Khi đó,
vì
Vậy Pmax = 1 khi và chỉ khi
Đáp án C
Phương pháp giải:
- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.
Lời giải:
log 3 x + y x 2 + y 2 + x y + 2 = x ( x - 3 ) + y ( y - 3 ) + x y (1)
(2)
Đặt
=> f(t) đồng biến trên (0;+∞)
Khi đó,
vì
Vậy Pmax = 1 khi và chỉ khi