Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)
Dấu bằng xảy ra khi
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
\(M=\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge2\cdot\frac{1}{\sqrt{xy}}\sqrt{1+x^2y^2}\)
\(=2\cdot\sqrt{\frac{1}{xy}+xy}\)
\(=2\cdot\sqrt{xy+\frac{1}{16xy}+\frac{15}{xy}}\)
\(\ge2\sqrt{2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16xy}}\left(1\right)\)
Áp dụng BĐT phụ \(ab\le\frac{\left(a+b\right)^2}{4}\) ta có:
\(\left(1\right)\ge2\cdot\sqrt{\frac{1}{2}+\frac{15}{4\cdot\left(x+y\right)^2}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)
(Bất đẳng thức này a;b > 0 mới dùng được)
\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Khai triển :
\(P=4x^2+4y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+8\)
Vì x,y dương
(+) AM-GM : \(\left\{{}\begin{matrix}4x^2+1\ge4x\\4y^2+1\ge4y\end{matrix}\right.\)
\(\Rightarrow4x^2+4y^2+2\ge4\left(x+y\right)=4\)
(+) AM-GM :\(\left\{{}\begin{matrix}\dfrac{1}{x^2}+4\ge\dfrac{4}{x}\\\dfrac{1}{y^2}+4\ge\dfrac{4}{y}\end{matrix}\right.\)
(+) Hệ quả AM-GM :\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}=4\)
\(\Rightarrow\dfrac{4}{x}+\dfrac{4}{y}\ge\dfrac{16}{x+y}=16\)
\(\Rightarrow4x^2+4y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+10\ge16+4\)
\(\Rightarrow P+2\ge20\)
\(\Rightarrow P\ge18\)
Dấu "=" xảy ra <=> \(x=y=\dfrac{1}{2}\)
Vậy MinP=18 khi \(x=y=\dfrac{1}{2}\)
Có một cách khác đó là biến đổi và dùng cô si trực tiếp vào cái biểu thức trong ngoặc rồi dùng Cauchy-Schwarz dạng Engel cho hai số (hơi phức tạp tí nhưng chắc không sao) -_-":
\(2x+\frac{1}{x}=4x+\frac{1}{x}-2x\ge2\sqrt{4x.\frac{1}{x}}-2x=4-2x\)
Từ đó suy ra \(\left(2x+\frac{1}{x}\right)^2\ge\left(4-2x\right)^2\).Tương tự: \(\left(2y+\frac{1}{y}\right)^2\ge\left(4-2y\right)^2\)
Cộng theo vế suy ra \(P\ge\left(4-2x\right)^2+\left(4-2y\right)^2\ge\frac{\left(4-2x+4-2y\right)^2}{2}\)
\(=\frac{\left[8-2\left(x+y\right)\right]^2}{2}=\frac{6^2}{2}=\frac{36}{2}=18\)
Dấu "=" xảy ra khi x = y = 1/2
Vậy...
Đầu tiên ta chứng minh bất đẳng thức sau:
1/x+1/y >=4/x+y =4 (vì x+y=1)
và 1/xy>=4/(x+y)^2 cũng=4
=>1/x+1/y+3.1/xy >= 4+ 3.4=16
Bất đẳng thức nhỏ nhất khi x=y=1/2
Ta có x + y= 3 => x= 3 - y
=> (3 - y)^2 + y^2 \(\ge\)5
Giải bất phương trình trên, ta được: y \(\ge\)2
Chỉ biết giải đến đó, min P= 33 thì phải
cảm ơn bn , tôi nghĩ ra rồi
bn ra dc \(y\ge2\)thì thay vào \(x^2+y^2\ge5\) ra dc \(x\ge1\)
khi đó min P = 1+16+6.4.1=41 khi và chỉ khi x=1 và y=2
tks bn
\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)
\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)
\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)