Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy xem phương pháp chọn điểm rơi của BĐT AM-GM( BĐT Cô-si)
Giải
\(P=\frac{3x}{10}+\frac{30}{x}+\frac{y}{20}+\frac{5}{y}+\frac{17x}{10}+\frac{19y}{20}\)
Áp dụng BĐT AM-GM, ta có:
\(\frac{3x}{10}+\frac{30}{x}\ge2\sqrt{\frac{3x}{10}\cdot\frac{30}{x}}=6\)
\(\frac{y}{20}+\frac{5}{y}\ge2\sqrt{\frac{y}{20}\cdot\frac{5}{y}}=1\)
Do đó
\(P\ge6+1+17+\frac{19}{2}=\frac{67}{2}\)(Vì \(x,y\ge10\))
Vậy \(P_{min}=\frac{67}{2}\Leftrightarrow x=y=10\)
Ta có: \(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{4}{5}x+\frac{6}{5}+\frac{4}{5}y+\frac{y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{4}{5}\left(x+y\right)+\left(\frac{6}{5}x+\frac{30}{x}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
\(Vì:x,y>0\) nên ta áp dụng BĐT Cauchy cho hai số dương \(\frac{6}{5}x\) và \(\frac{30}{x};\frac{y}{5}\) và \(\frac{5}{y}\) ta được:
\(\frac{6}{5}x+\frac{30}{x}\ge2\sqrt{\frac{6}{5}x.\frac{30}{x}}=12\left(1\right)\)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) và giả thiết \(x+y\ge10\)
\(\Rightarrow P\ge8+12+2=22\)
\(\Rightarrow Min_P=22\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=5\)
\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
\(=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\left(\dfrac{4x}{5}+\dfrac{4y}{5}\right)\)
\(\ge2.6+2+\dfrac{4}{5}.10=22\)
Vậy GTNN là P = 22 khi x = y = 5
\(Q=2x^2+\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)
\(Q\ge4+6+9=19\)
###Kaito###