K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(a^2+b^2=13\Leftrightarrow a^2+b^2+2ab-2ab=13\Leftrightarrow\left(a+b\right)^2-2ab=13\)

Mà \(a+b-ab=-1\Leftrightarrow ab=a+b+1\)Thay vào phương trình trêm ta có:

\(\left(a+b\right)^2-2\left(a+b+1\right)=13\)

<=> \(\left(a+b\right)^2-2\left(a+b\right)+1=16\)

<=> \(\left(a+b+1\right)^2=4^2\)

<=> \(a+b+1=\pm4\)=> \(ab=\pm4\)

Ta lại có: \(a^2+b^2=13\Leftrightarrow\left(a-b\right)^2+2ab=13\)

+) Với ab=4

thay vào ta có: \(\left(a-b\right)^2+8=13\Leftrightarrow\left(a-b\right)^2=5\Leftrightarrow\left|a-b\right|=\sqrt{5}\)

=> \(P=\left|a^3-b^3\right|=\left|\left(a-b\right)\left(a^2+b^2+ab\right)\right|=\left|a-b\right|\left|a^2+b^2+ab\right|\)

\(=\sqrt{5}\left(13+4\right)=17\sqrt{5}\)

+) Với ab=-4 . Em làm tương tự nhé!

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

\(P=|a^3-b^3|=|a-b||a^2+ab+b^2|=|a-b|.|13+ab|\)
Ta có: \(a+b-ab=-1\)

\(\Leftrightarrow a+b+1=ab\).

Do đó:

\(13+2ab=15+2(a+b)\)

\(\Leftrightarrow a^2+b^2+2ab=15+2(a+b)\)

\(\Leftrightarrow (a+b)^2=15+2(a+b)\Leftrightarrow (a+b)^2-2(a+b)-15=0\)

\(\Leftrightarrow (a+b-5)(a+b+3)=0\Rightarrow \left[\begin{matrix} a+b=5\\ a+b=-3\end{matrix}\right.\)

TH1: $a+b=5$\(\Rightarrow ab=a+b+1=6\)

\((a-b)^2=(a+b)^2-4ab=5^2-4.6=1\)

\(\Rightarrow |a-b|=1\)

\(P=|a-b|.|13+ab|=1.|13+6|=19\)

TH2: \(a+b=-3\Rightarrow ab=a+b+1=-2\)

\((a-b)^2=(a+b)^2-4ab=(-3)^2-4(-2)=17\)

\(\Rightarrow |a-b|=\sqrt{17}\)

\(P=|a-b|.|13+ab|=\sqrt{17}|13-2|=11\sqrt{17}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

\(P=|a^3-b^3|=|a-b||a^2+ab+b^2|=|a-b|.|13+ab|\)
Ta có: \(a+b-ab=-1\)

\(\Leftrightarrow a+b+1=ab\).

Do đó:

\(13+2ab=15+2(a+b)\)

\(\Leftrightarrow a^2+b^2+2ab=15+2(a+b)\)

\(\Leftrightarrow (a+b)^2=15+2(a+b)\Leftrightarrow (a+b)^2-2(a+b)-15=0\)

\(\Leftrightarrow (a+b-5)(a+b+3)=0\Rightarrow \left[\begin{matrix} a+b=5\\ a+b=-3\end{matrix}\right.\)

TH1: $a+b=5$\(\Rightarrow ab=a+b+1=6\)

\((a-b)^2=(a+b)^2-4ab=5^2-4.6=1\)

\(\Rightarrow |a-b|=1\)

\(P=|a-b|.|13+ab|=1.|13+6|=19\)

TH2: \(a+b=-3\Rightarrow ab=a+b+1=-2\)

\((a-b)^2=(a+b)^2-4ab=(-3)^2-4(-2)=17\)

\(\Rightarrow |a-b|=\sqrt{17}\)

\(P=|a-b|.|13+ab|=\sqrt{17}|13-2|=11\sqrt{17}\)