\(5a+b⋮19\)thì ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Ta có: \(4\left(5a+b\right)-5\left(4a-3b\right)\)

         \(=20a+4b-20a+15b\)

           \(=19b\) chia hết cho 19

Mà   \(5a+b\) chia hết cho 19 =>  \(4a-3b\) chia hết cho 19.

6 tháng 3 2020

ta co 

111 va 148 chia het cho 37 nen 111x va 148y chia het cho 37

Ma : 111x + 148y = 7x+ 4y +(104x +144y) = (7x + 4y ) + 8.(13x + 18y)

Nen 13x +18 y chia het cho 37

1.Với n là số tự nhiên thảo mãn 6n+1 và 7n-1 là hai số tự nhiên không nguyên tố cùng nhau thì ước chung lớn nhất của 6n+1 và 7n-1 là bao nhiêu?2. Tính giá trị:\(A=1-2+3+4-5-6+7+8-9-...+2007+2008-2009-2010\)3. Cho \(a,b\in N\):Chứng minh rằng: Nếu a,b là hai số nguyên tố cùng nhau thì 7a+5b và 4a + 3b cũng là hai số nguyên tố cùng nhau.Tính giá...
Đọc tiếp

1.Với n là số tự nhiên thảo mãn 6n+1 và 7n-1 là hai số tự nhiên không nguyên tố cùng nhau thì ước chung lớn nhất của 6n+1 và 7n-1 là bao nhiêu?

2. Tính giá trị:

\(A=1-2+3+4-5-6+7+8-9-...+2007+2008-2009-2010\)

3. Cho \(a,b\in N\):

Chứng minh rằng: Nếu a,b là hai số nguyên tố cùng nhau thì 7a+5b và 4a + 3b cũng là hai số nguyên tố cùng nhau.

Tính giá trị:

a.\(A=\frac{5.\left(2^2.3^2\right).\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)

b.\(B=\frac{7.6^{10}.2^{20}.3^6-2^{19-6^{15}}}{9.6^{19}.2^9-4.3^{17}.2^{26}}\)

c.\(-2^{2008}-2^{2007}-2^{2006}-...-2^2-2-1\)

4. Tìm số nguyên x sao cho : (6x-1) chia hết cho (3x+2)

5.

a. Tìm các chữ số x,y để :\(B=\overline{x183y}\) chia cho 2,5 và 9 đều dư 1

b. Tìm số tự nhiên x, y sao cho: \(\left(2x+1\right).\left(y^2-5\right)=12\)

c. Tìm số tự niên x biết: \(5^x.5^{x+1}.5^{x+2}=100....0\)chia hết cho 218

6

\(ChoA=1+2015+2015^2+2015^3+...+2015^{98}+2015^{99}\)

Chứng minh rằng 2014A+1 là 1 số chính phương

 

 

0
29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)

11 tháng 9 2020

Sửa \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)

Giả sử ngược lại thì ta có \(\frac{a}{2003}=\frac{b}{2004}\)và ta cần chứng minh \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)

Đặt \(\frac{a}{2003}=\frac{b}{2004}=k\Rightarrow\hept{\begin{cases}a=2003k\\b=2004k\end{cases}}\)

Khi đó \(\frac{a+2003}{a-2003}=\frac{2003k+2003}{2003k-2003}=\frac{2003\left(k+1\right)}{2003\left(k-1\right)}=\frac{k+1}{k-1}\)(1)

\(\frac{b+2004}{b-2004}=\frac{2004k+2004}{2004k-2004}=\frac{2004\left(k+1\right)}{2004\left(k-1\right)}=\frac{k+1}{k-1}\)(2)

Từ (1) và (2) => \(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\)

=> đpcm

Không hiểu chỗ nào thì ib nhé :)

11 tháng 9 2020

\(\frac{a+2003}{a-2003}=\frac{b+2004}{b-2004}\Leftrightarrow\frac{\frac{a}{2003}+1}{\frac{a}{2003}-1}=\frac{\frac{b}{2004}+1}{\frac{b}{2004}-1}\)

Đặt \(\frac{a}{2003}=x,\frac{b}{2004}=y\Rightarrow\frac{x+1}{x-1}=\frac{y+1}{y-1}\Leftrightarrow\left(x+1\right)\left(y-1\right)=\left(x-1\right)\left(y+1\right)\)
\(\Leftrightarrow xy-x+y-1=xy+x-y-1\Leftrightarrow2x=2y\Leftrightarrow x=y\)-----> Xooooong :)))

10 tháng 5 2018

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-1-\frac{1}{2}-...-\frac{1}{1009}\)

\(A=\frac{1}{1010}+\frac{1}{2000}+...+\frac{1}{2018}\)

\(B=3028.\left(\frac{1}{1010.2018}+...+\frac{1}{2018.1010}\right)\)

\(B=\frac{3028}{1010.2018}+...+\frac{3028}{2018.1010}\)

\(B=\frac{1}{1010}+\frac{1}{2018}+...+\frac{1}{2018}+\frac{1}{1010}\)

\(B=2.\left(\frac{1}{1010}+...+\frac{1}{2018}\right)\)

\(=>\frac{A}{B}=\frac{1}{2}\)

10 tháng 5 2018

Linh Phương Ngô chứng minh a/b là số nguyên cơ mà