K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b) 

\(\Rightarrow2\ge a+b\) 

Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\) 

Dấu "=" xảy ra khi: a=b=1

17 tháng 4 2022

CM BĐT kiểu j ạ

10 tháng 5 2018

Ta có: \(a^2+b^2=a+b\Leftrightarrow4a^2+4b^2=4a+4b\)

\(\Leftrightarrow4a^2-4a+4b^2-4b=0\Leftrightarrow\left(4a^2-4a+1\right)+\left(4b^2-4a+1\right)=2\)

\(\Leftrightarrow\left(2a-1\right)^2+\left(2b-1\right)^2=2\)

Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow\left(2a-1\right)^2+\left(2b-1\right)^2\ge\frac{\left(2a+2b-2\right)}{2}\)

\(\Rightarrow2\ge\frac{\left(2a+2b-2\right)^2}{2}\Leftrightarrow4\ge\left(2a+2b-2\right)^2\)

\(\Leftrightarrow1\ge a+b-1\Leftrightarrow4\ge a+b+2\)

Nhận thấy: \(S=\frac{a}{a+1}+\frac{b}{b+1}=\left(1-\frac{1}{a+1}\right)+\left(1-\frac{1}{b+1}\right)\)

\(=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\Rightarrow2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\)

Do \(a+b+2\le4\)(cmt) \(\Rightarrow\frac{4}{a+b+2}\ge1\Rightarrow2-\frac{4}{a+b+2}\le1\)

Từ đó: \(S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\le1\)

Suy ra \(Max\) \(S=1\).

Dấu "=" xảy ra khi \(a=b=1.\)

23 tháng 1 2016

Giải chi tiết dùm mình đi bạn, mình tick cho

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

1 tháng 6 2021

đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b

15 tháng 11 2017

Ta có:

\(2M=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Rightarrow M\le\sqrt{2}-1\)

15 tháng 11 2017

Ta có :

   \(2M=\frac{2ab}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}\)

\(\Leftrightarrow a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Leftrightarrow M\le\sqrt{2}-1\)

6 tháng 4 2018

Đề đúng bn ak !

18 tháng 4 2021

a, P là snt > 3 => \(\left(p-1\right)\left(p+1\right)\)là tích 2 số chẵn liên tiếp ( p-1 >= 4 )

nên sẽ tồn tại 1 bội của 4 giả sử số đó là p+1

S uy ra \(p+1⋮4;p-1⋮2=>\left(p+1\right)\left(p-1\right)⋮8\)

Do P là snt lẻ > 3 => P sẽ có dạng 3k+1 hoặc 3k+2 

rồi thay vồ => đpcm

18 tháng 4 2021

\(x^2+xy-2019x-2020y-2021=x^2+xy+x-\left(2020x+2020y+2020\right)-1\)

\(=x\left(x+y+1\right)-2020\left(x+y+1\right)-1=\left(x-2020\right)\left(x+y+1\right)-1\)

làm tắt xíu :))