\(x+y\) =
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

a) \(VT=x+y\)

\(=\frac{a}{b}+\frac{c}{d}\)

\(=\frac{ad}{bd}+\frac{bc}{bd}\)

\(=\frac{ad+bc}{bd}\left(VP\right)\)

b) \(VT=x-y\)

\(=\frac{a}{b}-\frac{c}{d}\)

\(=\frac{ad}{bd}-\frac{bc}{bd}\)

\(=\frac{ad-bc}{bd}\left(VP\right)\)

17 tháng 6 2016

Gõ phân số khó lắm. Chị gợi ý nhé.

a, Em nhân cả tử và mẫu của x với d, nhân cả tử và mẫu của y với b rồi cộng x với y lại. (Quy đồng mẫu số của x và y ấy)

b, Tương tự có điều lấy x trừ y

18 tháng 6 2016

b) x-y=a/b-c/d=ad/bd-bc/bd                                                                                                                                          suy ra x-y=ad-bc phan bd

18 tháng 6 2016

 cau a hinh nhu sai de

NM
7 tháng 9 2021

a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)

\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh

b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm

7 tháng 9 2021

Mk cảm ơn

27 tháng 8 2018

Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=bk\\\frac{c}{d}=q\Rightarrow c=dq\end{cases}}\)

a) Thay a và c vào biểu thức ta có :

\(\frac{bk}{b}< \frac{dq}{d}\Rightarrow k< q\)

=> ad ... bc

=> bkd ... bdq

=> k ... q

=> k < q

=> đpcm

b) tương tự thay a và c vào

19 tháng 8 2017

Giả sử : \(\frac{a}{b}=\frac{c}{d}\) thì ad = bc 

Suy ra : ad < bc thì \(\frac{a}{b}< \frac{c}{d}\) (đpcm)

23 tháng 6 2018

a) 

Có \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\) (vì bd > 0)

Vậy \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (với b, d > 0)

b) 

Có ad < bc và bd > 0

\(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

Vậy \(ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (với b, d > 0)

13 tháng 9 2020

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{b}< c\Rightarrow ad< bc\)

\(ad< bc\Rightarrow\frac{ad}{b}< c\Rightarrow\frac{a}{b}< \frac{c}{d}\)

13 tháng 9 2020

a) Vì b>0,d>0 nên khi nhân 2 vế của 1 BĐT cho b hoặc d thì dấu của BĐT không đổi

\(\frac{a}{b}< \frac{c}{d}\)nhân 2 vế BĐT cho b.d>0\(\Rightarrow\frac{a.b.d}{b}< \frac{c.b.d}{d}\Leftrightarrow ad< bc\)

b) Tương tự câu a ta chia 2 vế BĐT cho b.d

\(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

31 tháng 7 2017

\(\frac{a}{b}=\frac{ad}{bd}\)

\(\frac{c}{d}=\frac{cb}{bd}\)

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)