\(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2020

\(P=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(y-1\right)\left(x+1\right)\left(y+1\right)}{x^2y^2}=\frac{xy\left(x+1\right)\left(y+1\right)}{x^2y^2}\)

\(=\frac{xy+x+y+1}{xy}=\frac{xy+2}{xy}=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=...\)

9 tháng 3 2016

Theo bất đẳng thức Cô-Si, ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) Do vậy áp dụng bất đẳng thức Cô-Si 

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16\cdot\frac{1}{4}}=\frac{17}{4}.\)

a. Ta có \(M=\left(xy\right)^2+\frac{1}{\left(xy\right)^2}+2=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{17}{4}\right)^2=\frac{289}{16}.\)  Dấu bằng xảy ra khi \(x=y=\frac{1}{2}.\) Vây giá trị bé nhất của M là \(\frac{289}{16}.\)
b.  Theo bất đẳng thức Cô-Si 

\(N\ge2\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=2\left(xy+\frac{1}{xy}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\cdot\frac{17}{4}+4\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=\frac{25}{2}.\)

Dấu bằng xảy ra khi và chỉ \(x=y=\frac{1}{2}.\) 

2 tháng 6 2016

=> P = 2*2^2 - 6*1 + 9*1/2^2

=> P = 8 - 6 + 9/4

=> P= 17/4

2 tháng 6 2016

=> P = 2*2^2 - 6*1 + 9*1/2^2

=> P = 8 - 6 + 9/4

=> P = 17/4

NV
23 tháng 8 2020

\(\left(x+y\right)^2\ge4xy\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\Rightarrow...\)

NV
22 tháng 8 2020

\(x+y=1\Rightarrow\left\{{}\begin{matrix}-y=x-1\\-x=y-1\end{matrix}\right.\)

\(P=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}=\frac{-y\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}\)

\(=\frac{\left(x+1\right)\left(y+1\right)}{xy}=\frac{xy+x+y+1}{xy}=\frac{xy+2}{xy}=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=9\)

\(P_{min}=9\) khi \(x=y=\)

22 tháng 3 2017

\(M=x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+4\)

\(M=\left(1-2xy\right)+\dfrac{1-2xy}{\left(xy\right)^2}+4=\dfrac{1}{\left(xy\right)^2}-\dfrac{2}{xy}-2xy+5\\ \)đặt 1/xy= t \(\left(x+y\right)=1\Rightarrow xy\le\dfrac{1}{4}\Rightarrow t\ge4\)

\(M=t^2-2t-\dfrac{2}{t}+5\)

khi t > 1 hiển nhiên M luôn tăng khi t tăng => \(Mmin=M\left(4\right)=4.4-2.4-\dfrac{2}{4}+5=\dfrac{25}{2}\)

Đẳng thức khi t=4 => xy=1/4 => x=y=1/2

12 tháng 10 2020

\(A=\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{x^2y^2-x^2-y^2+1}{x^2y^2}=\frac{x^2y^2-x^2-y^2+\left(x+y\right)^2}{x^2y^2}=\frac{x^2y^2+2xy}{x^2y^2}\)\(=1+\frac{2}{xy}\)

Ta có BĐT: \(\left(x+y\right)^2\ge4xy;\forall x,y>0\)

Đẳng thức xảy ra khi và chỉ khi x=y.

\(\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)

Có: \(A=1+\frac{2}{xy}\ge1+\frac{8}{\left(x+y\right)^2}=1+8=9\)

Vậy GTNN của A=9 khi x=y=1/2

16 tháng 6 2018

với x,y>0 ta áp dụng BĐT cauchy nên ta có: 1+y \(\ge\)\(\sqrt{y}\)>0 (1)

với x,y>0 ta áp dụng BĐT cauchy nên ta có: 1+y/x \(\ge\)\(\sqrt{\frac{y}{x}}\)>0 (2)

Nhân theo vế của 2 BĐT (1),(2) ta có :(1+y)(1+y/x) \(\ge\)2\(\sqrt{y}\) 2.\(\sqrt{\frac{y}{x}}\)=4 \(\sqrt{\frac{y^2}{x}}\)=4 \(\sqrt{\frac{x^2+1}{x}}\)\(\ge\)  4 \(\sqrt{\frac{2x}{x}}\) (áp dụng BĐT cauchy cho x^2+1) =4 \(\sqrt{2}\)

Dấu "=" xảy ra khi x=1 và y=4

16 tháng 6 2018

mình ghi lộn dấu bằng xảy ra khi x=1 y=căn 2

23 tháng 5 2016

kho ghe

23 tháng 5 2016

\(a+b+c=1\)

\(P=\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\)