\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

2A = \(2.\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
 = \(\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\left(3^{16}-1\right)\left(3^{16}+1\right)\)\(3^{32}-1\)
=) A = \(\frac{3^{32}-1}{2}\)
Vì \(\frac{3^{32}-1}{2}< 3^{32}-1\)=) \(A< B\)

7 tháng 9 2019

Bây giờ tạm gọi các biểu thức ở mỗi bài lần lượt là A;B;C;...

a/\(A=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^3}=3^2=9\)

b/\(B=\frac{3^{10}.3^5.5^5}{-5^6.3^{14}}=\frac{-3}{5}\)

c/\(C=2^3+3.1-\frac{1}{2^2}.2^2+\frac{2^2}{2}.2^3=8+3-1+16=26\)

d/\(D=\frac{3^4}{2^8}.\frac{2^{12}}{3^8}=\frac{2^4}{3^4}=\frac{16}{81}\)

e/\(E=\frac{-31^3}{2^9}.\frac{2^{20}}{31^4}=\frac{-2^{11}}{31}=\frac{-2048}{31}\)

f/\(F=\frac{-3^5}{2^{10}}.\frac{2^{20}}{3^{10}}=\frac{-2^{10}}{3^5}=\frac{-1024}{243}\)
 

25 tháng 8 2017

a)\(\left(\frac{3}{5}\right)^5.x=\left(\frac{3}{7}\right)^7\)

\(x=\left(\frac{3}{7}\right)^7\div\left(\frac{3}{7}\right)^5\)

\(x=\left(\frac{3}{7}\right)^2\)

\(x=\frac{9}{49}\)

Vậy...

b)\(\left(-\frac{1}{3}\right)^3.x=\left(\frac{1}{3}\right)^4\)

\(\left(-\frac{1}{3}\right)^3.x=\left(-\frac{1}{3}\right)^4\)

\(x=\left(-\frac{1}{3}\right)^4\div\left(\frac{-1}{3}\right)^3\)

\(x=-\frac{1}{3}\)

Vậy...

c)\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)

=>\(x-\frac{1}{2}=\frac{1}{3}\)

\(x=\frac{1}{3}+\frac{1}{2}\)

\(x=\frac{5}{6}\)

Vậy...

d)\(\left(x+\frac{1}{4}\right)^4=\left(\frac{2}{3}\right)^4\)

=>\(x+\frac{1}{4}=\frac{2}{3}\)

\(x=\frac{2}{3}-\frac{1}{4}\)

\(x=\frac{5}{12}\)

Vậy...

Phù, mãi mới xong, tk cho mk nha bn

9 tháng 9 2019

Gửi tạm trước 2 câu !

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

9 tháng 9 2019

Trả lời :

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

6 tháng 9 2017

a/ \(\left(-52\right)^3:13^3=\left(-52:13\right)^3=\left(-4\right)^3\)

b/ \(\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{4}\right)^6=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{2}\right)^3\)

c/ \(\left(\dfrac{1}{9}\right)^{30}:\left(\dfrac{1}{3}\right)^{56}=\left(\dfrac{1}{3}\right)^{60}:\left(\dfrac{1}{3}\right)^{56}=\left(\dfrac{1}{3}\right)^4\)

d/ \(\left(\dfrac{1}{8}\right)^5:\left(\dfrac{1}{16}\right)^3=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{2}\right)^3\)

6 tháng 9 2017

Tính

a) (- 52)3 : 133 = (- 52 : 13)3 = (- 4)3 = - 64

b) \(\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{4}\right)^6\)

\(=\left(\dfrac{1}{2}\right)^{15}:\left[\left(\dfrac{1}{2}\right)^2\right]^6\)

\(=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}\)

\(=\left(\dfrac{1}{2}\right)^3\)

\(=\dfrac{1}{8}\)

c) \(\left(\dfrac{1}{9}\right)^{30}:\left(\dfrac{1}{3}\right)^{56}\)

\(=\left[\left(\dfrac{1}{3}\right)^2\right]^{30}:\left(\dfrac{1}{3}\right)^{56}\)

\(=\left(\dfrac{1}{3}\right)^{60}:\left(\dfrac{1}{3}\right)^{56}\)

\(=\left(\dfrac{1}{3}\right)^4\)

\(=\dfrac{1}{81}\)

d) \(\left(\dfrac{1}{8}\right)^5:\left(\dfrac{1}{16}\right)^3\)

\(=\left[\left(\dfrac{1}{2}\right)^3\right]^5:\left[\left(\dfrac{1}{2}\right)^4\right]^3\)

\(=\left(\dfrac{1}{2}\right)^{15}:\left(\dfrac{1}{2}\right)^{12}\)

\(=\left(\dfrac{1}{2}\right)^3\)

\(=\dfrac{1}{8}.\)

12 tháng 10 2020

a) \(\left|\frac{1}{3}x-8\right|+3=15\)

\(\Leftrightarrow\left|\frac{1}{3}x-8\right|=12\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x-8=-12\\\frac{1}{3}x-8=12\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x=-4\\\frac{1}{3}x=20\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=60\end{cases}}\)

Vậy \(x\in\left\{-12;60\right\}\)

b) \(15-\left|2+3x\right|=8\)

\(\Leftrightarrow\left|2+3x\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}2+3x=-7\\2+3x=7\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-9\\3x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\frac{5}{3}\end{cases}}\)

Vậy \(x\in\left\{-3;\frac{5}{3}\right\}\)

d) \(-1\frac{1}{6}-\left|5-3x\right|=\frac{2}{3}\)

\(\Leftrightarrow\frac{-7}{6}-\left|5-3x\right|=\frac{2}{3}\)

\(\Leftrightarrow\left|5-3x\right|=\frac{-7}{6}-\frac{2}{3}\)

\(\Leftrightarrow\left|5-3x\right|=\frac{-11}{6}\)

Vì \(\left|5-3x\right|\ge0\forall x\)

mà \(\frac{-11}{6}< 0\)\(\Rightarrow\)Vô lý 

Vậy \(x\in\varnothing\)

12 tháng 10 2020

e) \(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{20}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{2.6}\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^8\)

g) \(4.2^5:\left(2^3.1^{16}\right)=2^2.2^5:2^3=2^4=16\)

21 tháng 8 2019

\(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\)

\(x+\frac{1}{8}=\frac{1}{4}\)

\(x=\frac{1}{4}-\frac{1}{8}\)

\(x=\frac{4}{16}-\frac{2}{16}\)

\(x=\frac{1}{8}\)

Vậy \(x=\frac{1}{8}\)

b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\)

      \(\frac{8}{27}-x=\frac{1}{3}\)

                    \(x=\frac{8}{27}-\frac{1}{3}\)

                    \(x=\frac{8}{27}-\frac{9}{27}\)

                     \(x=-\frac{1}{27}\)

Vậy \(x=-\frac{1}{27}\)

c) \(x.\left(-\frac{1}{2}\right)^4=\frac{3}{8}\)

 \(x.\frac{1}{16}=\frac{3}{8}\)

       \(x=\frac{3}{8}:\frac{1}{16}\)

        \(x=\frac{3}{8}.16\)

      \(x=6\)

c) \(\left(\frac{1}{2}\right)^3.x=\left(\frac{1}{2}\right)^5\)

\(x=\left(\frac{1}{2}\right)^5:\left(\frac{1}{2}\right)^3\)

\(x=\left(\frac{1}{2}\right)^2\)

\(x=\frac{1}{4}\)

Vậy \(x=\frac{1}{4}\)

Chúc bạn học tốt !!!

21 tháng 8 2019

a) \(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\Leftrightarrow x+\frac{1}{8}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}-\frac{1}{8}\Leftrightarrow x=\frac{1}{8}\)

b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\Leftrightarrow\frac{8}{27}-x=\frac{1}{3}\Leftrightarrow-x=\frac{1}{3}-\frac{8}{27}\Leftrightarrow-x=\frac{1}{27}\Leftrightarrow x=-\frac{1}{27}\)

c) \(x.\left(\frac{-1}{2}\right)^4=\frac{3}{8}\Leftrightarrow x.\frac{1}{16}=\frac{3}{8}\Leftrightarrow x=\frac{3}{8}:\frac{1}{16}\Leftrightarrow x=6\)

d) \(\left(\frac{1}{2}\right)^2.x=\left(\frac{1}{2}\right)^5\Leftrightarrow\frac{1}{8}.x=\frac{1}{32}\Leftrightarrow x=\frac{1}{32}:\frac{1}{8}\Leftrightarrow x=\frac{1}{4}\)

18 tháng 7 2017

\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.3^9.2^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}=\dfrac{3^8-3^9}{3^8.6}=\dfrac{3^8.\left(1-3\right)}{3^8.6}=\dfrac{-2}{6}=-\dfrac{1}{3}\)

~ Học tốt ~

18 tháng 7 2017

Bài 1:

1) \(3^2.\dfrac{1}{243}.81^2.\dfrac{1}{3^3}\)

\(=3^2.\left(\dfrac{1}{3}\right)^5.\left(3^4\right)^2.\dfrac{1}{3^3}\)

\(=3^2.\dfrac{1}{3^5}.3^8.\dfrac{1}{3^3}\)

\(=3^2=9\)

2) \(\left(4.2^5\right):\left(2^3.\dfrac{1}{16}\right)\)

\(=\left(2^2.2^5\right):[2^3.\left(\dfrac{1}{2}\right)^4]\)

\(=2^7:2^3:\dfrac{1}{2^4}\)

\(=2^4.2^4=256\)

3)\(\left(2^{-1}+3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}.1:2^3\)

\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2^4}\)

\(=\dfrac{43}{48}\)

4)\(\left(-\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=-3-1+\dfrac{1}{4}.\dfrac{1}{2}\)

\(=-3-1+\dfrac{1}{8}\)

\(=-4+\dfrac{1}{8}\\ \)

\(=-\dfrac{31}{8}\)

5)\([\left(0,1\right)^2]^0+[\left(\dfrac{1}{7}\right)^{-1}]^2.\dfrac{1}{49}.[\left(2^2\right)^3:2^5]\\ =1+7^2.\dfrac{1}{7^2}.2^6:2^5\\ =1+1.2\\ =3\)

Chúc bạn học tốt haha

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm