K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

Từ BĐT vừa chứng minh trên ta suy ra

\(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\dfrac{a+b}{2}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\)

\(\Rightarrow ab\le\left(\dfrac{6}{2}\right)^2=3^2=9\left(a+b=6\right)\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=6\end{matrix}\right.\)\(\Rightarrow a=b=3\)

13 tháng 4 2016

vì a+b=6 nên a,b<=6 

a0123456
b6543210

=> ab<=9

24 tháng 4 2017

 có a+b=6 suy ra (a+ b)2= 36 mà (a+ b)2 lớn hơn hoặc bằng 4ab nên 36 lớn hơn hoặc bằng 4ab 

suy ra ab nhỏ hơn hơn hoặc bằng 9

k mình nha

24 tháng 4 2017

ta có a+b=\(\left(\sqrt{a}\right)^2\)\(+\left(\sqrt{b}\right)^2\)Mặt khác ta có \(\left(\sqrt{a}\right)^2-2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)\(+\left(\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\)\(\Rightarrow\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\ge2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)=\(2\sqrt{ab}\)\(\Rightarrow a+b\ge2\sqrt{ab}\)\(\Rightarrow\left(a+b\right)^2\ge4ab\)\(\Rightarrow36\ge4ab\Rightarrow ab\le9\)

1 tháng 6 2017

Bổ xung đề a,b,c dương 

1/ Chứng minh a < 1 

Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)

\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)

Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)

\(\Rightarrow a< 1\)

Chứng minh b > 1 

Giả sử \(a< b\le1\Rightarrow ab< 1\)

Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)

\(\Rightarrow c\left(a+b\right)>8\)

Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)

Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)

\(\Rightarrow6-c+\frac{c}{2}>4\)

\(\Rightarrow c< 4\)

\(\Rightarrow a+b>2\)(trái giải thuyết)

\(\Rightarrow b>1\)

Tương tự làm phần còn lại nhé.

1 tháng 6 2017

tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp

22 tháng 3 2019

Nhân c vào 2 vế BĐT a<b, ta được:

ac<bc (1)

Nhân b vào 2 vế BĐT c<d, ta được:

bc<bd (2)

Từ (1) và (2) suy ra:

ac<bd (tính chất bắc cầu)

18 tháng 4 2017

ta co:

      a-b=a^3+b^3

a-b-b^3=a^3

Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3

Nhưng a-b-b^3=a^3 nên b=0

Mà a=a^3 suy ra a=1

28 tháng 4 2024

nếu nhưtrong trường hợp a<= 1 thì a >= a^3 chứ?

24 tháng 4 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\) (1)

<=> \(\frac{1+a^2+b^2+1}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)

>=> \(\frac{4}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)

<=> 2 ( 1 + ab) \(\le\)1 + a^2 + b^2 + a^2b^2

<=> a^2 b^2 -2ab + 1 \(\ge\)

<=> (ab - 1 ) ^2  \(\ge\)0 đúng  với mọi số thực dương a, b 

vậy (1) đúng với mọi số thực dương a, b 

Dấu "=" xảy ra <=> ab = 1 và a^2 + b^2 = 2 <=> a = b = 1