Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương
Ta có:
* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)
* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)
b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)
Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)
mà ab2<b3 (a<b)
\(\Rightarrow a^3< b^3\)
a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc
b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
1.
TH1: nếu trong 3 số có ít nhất 1 số bằng 0, không mất tính tổng quát, giả sử đó là a \(\Rightarrow b+c=0\Rightarrow b=-c\)
\(\Rightarrow a^{2011}+b^{2011}+c^{2011}=0+b^{2011}+\left(-b\right)^{2011}=0< 2\) (thỏa mãn)
TH2: nếu cả 3 số đều khác 0 \(\Rightarrow\) trong 3 số tồn tại ít nhất 1 số âm, giả sử đó là a
\(\Rightarrow a^{2011}< 0\)
Mặt khác do \(-1\le b\le1\Rightarrow b^{2011}\le\left|b\right|^{2011}\le1\)
Tương tự: \(c^{2011}\le1\)
\(\Rightarrow a^{2011}+b^{2011}+c^{2011}\le a^{2011}+1+1\le a^{2011}+2< 2\) (đpcm)
2.
\(\Leftrightarrow\frac{2\left(x-5\right)+10}{x-5}-\frac{3}{x-1}< 2\)
\(\Leftrightarrow2+\frac{10}{x-5}-\frac{3}{x-1}< 2\Leftrightarrow\frac{10}{x-5}-\frac{3}{x-1}< 0\)
\(\Leftrightarrow\frac{10x-10-3x+15}{\left(x-5\right)\left(x-1\right)}< 0\Leftrightarrow\frac{7x+5}{\left(x-5\right)\left(x-1\right)}< 0\)
\(\Rightarrow\left[{}\begin{matrix}x< -\frac{5}{7}\\1< x< 5\end{matrix}\right.\)
Ta có:a-7>b-7\(\Rightarrow\)a>b
Vì a>b\(\Rightarrow\)a+7>b+7
Vậy khẳng định(C) là đúng
a: 3x+2>8
nên 3x>6
hay x>2
b: 4x-5<7
nên 4x<12
hay x<3
c: -2x+1<7
nên -2x<6
hay x>-3
d: -3x+13>-2
=>-3x>-15
hay x<5
Ta có : \(b\ge a\left(gt\right)\) \(\Leftrightarrow\frac{b}{c}\ge\frac{a}{c}\left(\text{ c dương}\right)\Leftrightarrow\frac{c}{b}\ge\frac{c}{a}\) (1)
\(c\ge b\left(gt\right)\) \(\Leftrightarrow\frac{c}{a}\ge\frac{b}{a}\left(a\text{ }dương\right)\) (2)
\(c\ge a\left(gt\right)\) \(\Leftrightarrow\frac{c}{b}\ge\frac{a}{b}\left(b\text{ }\text{ dương}\right)\Leftrightarrow\frac{b}{c}\ge\frac{b}{a}\) (3)
Từ (1) , (2) và (3) ta có : \(\frac{c}{a}+\frac{b}{c}\ge\frac{b}{a}+\frac{a}{b}\)
chọn b