S=a/a+1 +b/b+1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b) 

\(\Rightarrow2\ge a+b\) 

Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\) 

Dấu "=" xảy ra khi: a=b=1

17 tháng 4 2022

CM BĐT kiểu j ạ

10 tháng 5 2018

Ta có: \(a^2+b^2=a+b\Leftrightarrow4a^2+4b^2=4a+4b\)

\(\Leftrightarrow4a^2-4a+4b^2-4b=0\Leftrightarrow\left(4a^2-4a+1\right)+\left(4b^2-4a+1\right)=2\)

\(\Leftrightarrow\left(2a-1\right)^2+\left(2b-1\right)^2=2\)

Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow\left(2a-1\right)^2+\left(2b-1\right)^2\ge\frac{\left(2a+2b-2\right)}{2}\)

\(\Rightarrow2\ge\frac{\left(2a+2b-2\right)^2}{2}\Leftrightarrow4\ge\left(2a+2b-2\right)^2\)

\(\Leftrightarrow1\ge a+b-1\Leftrightarrow4\ge a+b+2\)

Nhận thấy: \(S=\frac{a}{a+1}+\frac{b}{b+1}=\left(1-\frac{1}{a+1}\right)+\left(1-\frac{1}{b+1}\right)\)

\(=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\Rightarrow2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\)

Do \(a+b+2\le4\)(cmt) \(\Rightarrow\frac{4}{a+b+2}\ge1\Rightarrow2-\frac{4}{a+b+2}\le1\)

Từ đó: \(S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\le1\)

Suy ra \(Max\) \(S=1\).

Dấu "=" xảy ra khi \(a=b=1.\)

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

22 tháng 12 2020

∙2/(a+b)=2/(a2+b2)≥(a+b)2⇒a+b≤2

Do đó:

S=a/a+1+b/b+1=(1−1/a+1)+(1−1/b+1)=2−(1/a+1+1/b+1)≤2−4/a+b+2≤2−4/2+2=1

1 tháng 6 2021

đề bài này sao sao ý của mik là nhỏ hơn hoặc bằng a+b

19 tháng 7 2016

a) Ta có ; \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a^2+2ab+b^2\right)\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=2\)

Vậy A đạt giá trị nhỏ nhất bằng 2 tại a = b = 1

b) Ta có : \(B=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=\left(a^2+\frac{1}{a^2}\right)+\left(b^2+\frac{1}{b^2}\right)+4\)

Lại có : \(a^2+\frac{1}{a^2}\ge2\) ; \(b^2+\frac{1}{b^2}\ge2\)

\(\Rightarrow B\ge2+2+4=8\). Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2=\frac{1}{a^2}\\b^2=\frac{1}{b^2}\\a+b=2\end{cases}}\) \(\Leftrightarrow a=b=1\)(vì a,b>0)

Vậy B đạt giá trị nhỏ nhất bằng 8 tại a = b = 1

12 tháng 10 2019

\(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\Leftrightarrow a+\sqrt{1+a^2}=b+\sqrt{1+b^2}\)

Bình phương cả 2 vế: \(2a\sqrt{1+a^2}=2b\sqrt{1+b^2}\)

Tiếp tục bình phương: \(a^2+a^4=b^2+b^4\)

\(\Leftrightarrow a^2-b^2+\left(b^2-a^2\right)\left(a^2+b^2\right)=0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(1-a^2-b^2\right)=0\)

Đến đây ta có: \(\orbr{\begin{cases}a=b\\a^2+b^2=1\end{cases}}\)

Nếu a=b sẽ có vô số a,b TMDK nên đề bài nên có thêm điều kiện a,b phân biệt