Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)
=\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a+b+c}{abc}\right)\)
mà a+b+c=0
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{0}{abc}\right)=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)
\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)
\(-ab+ac\le0\)
\(-ad-cd\le0\)
\(-bc+bd\le0\)
\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)
\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
Bằng nhau khi và chỉ khi a = b = c = d
Dấu lớn xảy ra khi a> b >c > d
***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài ***********
a ) \(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
\(\Leftrightarrow8x^3-4x^4-x^2+16x^2-8x^3-2x+8x-4x^2-1=4x^2+4x+4\)
\(\Leftrightarrow-4x^4+11x^2+6x-1=4x^2+4x+4\)
\(\Leftrightarrow-4x^4+7x^2+2x-5=0\)
\(\Leftrightarrow-4x^3\left(x-1\right)-4x^2\left(x-1\right)+3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x^3-4x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[-4x^2\left(x-1\right)-8x\left(x-1\right)-5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(4x^2+8x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^2+8x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x+2\right)^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x+2\right)^2=-1\left(VL\right)\end{matrix}\right.\)
Vậy ...
b ) Giả sử : \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2\ge2\)
thì \(a^2+b^2+\left(\frac{ab+1}{a+b}\right)^2-2\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(\frac{ab+1}{a+b}\right)^2-2\left(ab+1\right)\ge0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2\ge0\) ( luôn đúng )
=> Điều giả sử là đúng
=> ĐPCM
Ta có a + b = 1 nên \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)
Lại có \(a^2+b^2=a^2+\left(1-a\right)^2=2a^2-2a+1\)
\(2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy nên \(a^3+b^3+ab\ge\frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(\Leftrightarrow\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+ab\ge\frac{1}{2}\)
\(\Leftrightarrow a^3+b^3+ab\ge\frac{1}{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
a)
\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)
\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)
\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)
\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)
Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)
b)
Xét hiệu
\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)
\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)
Dấu "=" xảy ra khi $x=y$
c)
Xét hiệu:
\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)
\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)
\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)
\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)
Dấu "=" xảy ra khi \(ad=bc\)
d)
Xét hiệu:
\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)
\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)
\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)
\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Ta có :
\(a^3+b^3+ab=\left(a+b\right)^3-3ab\left(a+b\right)+ab=1^3-3ab+ab=1-2ab\)
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)
\(\Rightarrow-ab\ge\frac{-1}{4}\Rightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\)
\(\Rightarrow a^3+b^3+ab\ge\frac{1}{2}\left(đpcm\right)\)