Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow\left(a+b+c\right)^2\le9\Rightarrow a+b+c\le3\left(1\right)\)
Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow ab+bc+ca\le3\left(2\right)\)
Cộng vế với vế của\(\left(1\right),\left(2\right)\)ta được:
\(a+b+c+ab+bc+ca\le3+3=6\left(đpcm\right)\)
Trước tiên chứng minh:
\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
(nhân vô rút gọn chuyển hết sang trái được)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+c^2a+c^2b-6abc\ge0\)
\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(b^2a-2abc+c^2a\right)\ge0\)
\(\Leftrightarrow\left(a\sqrt{b}-c\sqrt{b}\right)^2+\left(a\sqrt{c}-b\sqrt{c}\right)^2+\left(b\sqrt{a}-c\sqrt{a}\right)^2\ge0\)(đúng)
Từ đây ta có:
\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8\left(a+b+c\right)}=\frac{9}{4\left(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right)}\)
\(\le\frac{9}{4.3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4.3}=\frac{3}{4}\)
Vậy \(ab+bc+ca\le\frac{3}{4}\)
Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Từ BĐT vừa chứng minh trên ta suy ra
\(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\dfrac{a+b}{2}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\)
\(\Rightarrow ab\le\left(\dfrac{6}{2}\right)^2=3^2=9\left(a+b=6\right)\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=6\end{matrix}\right.\)\(\Rightarrow a=b=3\)
có a+b=6 suy ra (a+ b)2= 36 mà (a+ b)2 lớn hơn hoặc bằng 4ab nên 36 lớn hơn hoặc bằng 4ab
suy ra ab nhỏ hơn hơn hoặc bằng 9
k mình nha
ta có a+b=\(\left(\sqrt{a}\right)^2\)\(+\left(\sqrt{b}\right)^2\)Mặt khác ta có \(\left(\sqrt{a}\right)^2-2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)\(+\left(\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)^2\ge0\)\(\Rightarrow\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\ge2\left(\sqrt{a}\right)\left(\sqrt{b}\right)\)=\(2\sqrt{ab}\)\(\Rightarrow a+b\ge2\sqrt{ab}\)\(\Rightarrow\left(a+b\right)^2\ge4ab\)\(\Rightarrow36\ge4ab\Rightarrow ab\le9\)