K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Pt \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\) (1)

Ta thấy ngay pt (1) có 1 nghiệm x = 2

Vậy nên ta có: \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+\left(1-m\right)x+\left(-2m^2+m\right)\right)=0\)

Để pt (1) có đúng hai nghiệm phân biệt thì pt \(\Leftrightarrow x^2+\left(1-m\right)x+\left(-2m^2+m\right)=0\) có 1 nghiệm duy nhất khác 2

Tức là: \(\hept{\begin{cases}\Delta=0\\4+2\left(1-m\right)+\left(-2m^2+m\right)\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(3m-1\right)^2=0\\-2m^2-m+6\ne0\end{cases}}\Leftrightarrow m=\frac{1}{3}\)

Vậy \(m=\frac{1}{3}.\)

18 tháng 9 2024

Thầy/cô ơi làm sao để tách ra được nhân tử chung (x-2) vậy ạ 

x^2 -(3m-1)x +2m^2 -m=0
a) Khi m=1 ta có phương trình như sau:
x^2 -(3.1 -1)x +2.1-1=0
<=> x^2 -2x +1=0
<=>(x-1)^2 =0
<=>x=1

1 tháng 3 2018

+Xét pt (1), ac < 0 => pt luôn có 2 nghiệm pb

Để 2 pt tương đương thì trước hết pt (2) cũng có 2 nghiệm pb

<=> 3n < 0 <=> n <0

+ Theo định lý Vi-et:

pt (1) : \(\left\{{}\begin{matrix}x_1+x_2=-4m-3n\\x_1x_2=-9\end{matrix}\right.\)

pt (2) : \(\left\{{}\begin{matrix}x_1+x_2=2m+4n\\x_1x_2=3n\end{matrix}\right.\)

pt (1) và (2) tương đương => \(\left\{{}\begin{matrix}-4m-3n=2m+4n\\3n=-9\end{matrix}\right.\)

(bạn tự giải tiếp nhé ^^!, tìm n từ phương trình dưới rồi thay vào pt trên tìm m)

2 tháng 3 2018

x^2 +(4m+3n)x -9 =0 (1)

x^2 +(2m +4n)x +3n =0 (2)

\(\Delta_1=\left(4m+3n\right)^2+36\)> 0 với mọi m;n => (1) luôn có hai nghiệm

có tích hai nghiệm = -9 không phụ thuộc m;n

để tương đương => (2) phải có hai nghiệm giống (1)

\(\left\{{}\begin{matrix}\Delta_2'=\left(m+2\right)^2-3n>0\\x_1..x_2=3n=-9=>n=n=-3\end{matrix}\right.\) với n=-3 \(\Delta_2'=\left(m+2\right)^2+9>0\) đúng với m => nhận n =-3

tổng hai nghiệm bằng nhau

<=>\(x_{11}+x_{12}=x_{12}+x_{22}\Leftrightarrow\left(4m-9\right)=\left(2m-8\right)\Leftrightarrow2m=1;m=\dfrac{1}{2}\)

kết luận

\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n=-3\end{matrix}\right.\)

20 tháng 6 2017

\(\text{Δ}=\left(m-1\right)^2-\left(m^2+2m-8\right)\)

\(=m^2-2m+1-m^2-2m+8\)

\(=-4m+9\)

Để pt có 2 nghiệm phân biệt thì Δ>0

\(Hay:-4m+9>0\)

\(\Leftrightarrow-4m>-9\)

\(\Leftrightarrow m< 2,25\)

Vậy để pt có 2 nghiệm phân biệt thì m<2,25

20 tháng 6 2017

Đề này thuộc dạng khó !!!! HSG đâu mình nhờ xíu !!!

2 tháng 7 2020

ms học lớp 5 nên giải câu a )

\(-x^2+\left(2m-2\right)x-m^2+3m-3=0\)

thay \(m=2\)vào PT(1)

ta có \(-x^2+\left(2.2-2\right)x-2^2+3.2-3=0\)

   \(\Leftrightarrow-x^2+2x-4+6-3=0\)

\(\Leftrightarrow-x^2+2x-4+3=0\)

\(\Leftrightarrow-x^2+2x-4=-3\)

\(\Leftrightarrow-x^2+2x=1\)

....

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )