\(\frac{5}{6y^7}\) và \(\frac{19}{3t^8}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Bổ sung cái cậu ghi hình như mẫu thức \(6y^7t\)

Hai mẫu thức là \(6y^7t\) và \(3t^8\)

-BCNN(6,3) = 6

- Số mũ cao nhất của luỹ thừa là \(y\) là 7, ta chọn nhân tử \(y^7\)

- Số mũ cao nhất của luỹ thừa cơ số \(t\) là 8 ta chọn nhân tử \(t^8\)

Từ cách làm trên mẫu thức chung của hai phân thức là: \(6y^7t^8\)

9 tháng 11 2019

Hai mẫu thức là: \(11z^4t\) và \(8t^5\)

-BCNN(11,8) = 88

-Số mũ cao nhất của luỹ thừa cơ số là \(z\)là 4  ta chọn nhân tử \(z^4\)

-Số mũ cao nhất của luỹ thừa cơ số là  \(t\)là 5 ta chọn nhân tử \(t^5\)

Vậy: Mẫu thức chung của hai phân thức chung là: \(88z^4t^5\)

9 tháng 11 2019

MTC của hai phân thức trên là: \(88z^4t^6\)

Vì: 

\(\frac{13}{11z^4t}=\frac{13.8t^5}{11z^4t.8t^5}=\frac{13.8t^5}{88z^4t^6}\)

\(\frac{4}{8t^5}=\frac{4.11z^4t}{8t^5.11z^4t}=\frac{4.11z^4t}{88z^4t^6}\)

12 tháng 11 2019

Gỉai:

Ta có: 

Mẫu thức chung của hai phân thức: \(7\left(z-x\right)^4\left(x-y\right)\) và \(11\left(x-y\right)^8\)

-BCNN: \(\left(7,11\right)=77\)

-Số mũ cao nhất của cơ số: \(\left(z-x\right)\) là 4 ta chọn nhân tử \(\left(z-x\right)^4\)

-Số mũ cao nhất của luỹ thừa cơ số: \(\left(x-y\right)\) là 8 ta chọn nhân tử \(\left(x-y\right)^8\)

Vậy mẫu thức chung cần tìm của hai phân thức là: \(77\left(z-x\right)^4\left(x-y^8\right)\)

Vậy a = 77, b= 4, c= 8

12 tháng 11 2019

Hình như là tìm Mẫu thức chung không phải quy đồng ghi sai à bạn :)?

1 tháng 7 2017

MTC : \(150\left(x-2\right)\left(x-3\right)\)

\(\frac{5}{2x-4}=\frac{5}{2\left(x-2\right)}=\frac{5.3.\left(-25\right)\left(x-3\right)}{2.3.\left(-25\right)\left(x-2\right)\left(x-3\right)}=\frac{375\left(x-3\right)}{150\left(x-2\right)\left(x-3\right)}\)

\(\frac{z}{3x-9}=\frac{z}{3\left(x-3\right)}=\frac{z.2.\left(-25\right).\left(x-2\right)}{3.2.\left(-25\right)\left(x-3\right)\left(x-2\right)}=\frac{-50z\left(x-2\right)}{150\left(x-2\right)\left(x-3\right)}\)

\(\frac{7}{50-25x}=\frac{7}{-25\left(x-2\right)}=\frac{7.2.3.\left(x-3\right)}{-25.2.3\left(x-2\right)\left(x-3\right)}=\frac{42\left(x-3\right)}{150\left(x-2\right)\left(x-3\right)}\)

1 tháng 7 2017

Giúp mk đi maf

2 tháng 7 2017

a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)

Quy đồng :

\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)

\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)

c ) MTC : \(\left(x+2\right)^3\)

\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)

\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)

\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)