Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
Bài 1 :
a) \(x^8+x+1\)
\(=x^8-x^2+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^4-x^2+1\right)\left(x^2+x+1\right)\)
b) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+\left(y^2\right)^2+2.8x^2.y^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?
Từ 1/m + 1/n + 1/p = 0
=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0
Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4
Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4
Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
Ta có: x3 + y3 + z3 = 3xyz
x3 + y3 + z3 - 3xyz = 0
x3 + 3x2y + 3xy2 + y3 + z3 - 3xy(x + y) - 3xyz = 0
(x + y)3 + z2 - 3xy(x + y + z) = 0
(x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z) = 0
(x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy) = 0
(x + y + z)(x2 + y2 + z2 - xz - yz - xy) = 0
=> x + y + z = 0 hoặc x2 + y2 + z2 - xz - yz - xy = 0
+) Với x + y + z = 0
<=> x + y = -z, x + z = -y, y + z = -x
Thay x + y = -z, x + z = -y, y + z = -x vào P, ta có:
\(P=\frac{xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=-1\)
+) Với x2 + y2 + z2 - xz - yz - xy = 0
=> 2x2 + 2y2 + 2z2 - 2xz - 2yz - 2xy = 0
=> (x2 - 2xy + y2) + (x2 - 2xz + z2) + (y2 - 2yz + z2) = 0
=> (x - y)2 + (x - z)2 + (y - z)2 = 0
=> (x - y)2 = 0 và (x - z)2 = 0 và (y - z)2 = 0
=> x = y và x = z và y = z
=> x = y = z
Thay x = y = z vào P, ta có:
\(P=\frac{xxx}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{x^3}{\left(2x\right)^3}=\frac{x^3}{8x^3}=\frac{1}{8}\)
Gỉai:
Ta có:
Mẫu thức chung của hai phân thức: \(7\left(z-x\right)^4\left(x-y\right)\) và \(11\left(x-y\right)^8\)
-BCNN: \(\left(7,11\right)=77\)
-Số mũ cao nhất của cơ số: \(\left(z-x\right)\) là 4 ta chọn nhân tử \(\left(z-x\right)^4\)
-Số mũ cao nhất của luỹ thừa cơ số: \(\left(x-y\right)\) là 8 ta chọn nhân tử \(\left(x-y\right)^8\)
Vậy mẫu thức chung cần tìm của hai phân thức là: \(77\left(z-x\right)^4\left(x-y^8\right)\)
Vậy a = 77, b= 4, c= 8
Hình như là tìm Mẫu thức chung không phải quy đồng ghi sai à bạn :)?